Abstract
The mode of action by bystander helper T cells was investigated by priming (responder X nonresponder) (B6A)F1 T cells with poly-L-(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(TG)-A--L] and titrating the ability of these cells to stimulate an anti-sheep red blood cell (SRBC) response of parental B cells and macrophages in the presence of (TG)-A--L. Under limiting T cell conditions, and in the presence of (TG)-A--L, (TG)-A--L- responsive T cells were able to drive anti-SRBC responses of high- responder C57BL/10.SgSn (B10) B cells and macrophages (M0), but not of low-responder (B10.A) B cells and M0. Surprisingly, the (TG)-A--L- driven anti-SRBC response of B10.A B cells was not restored by addition of high-responder acessory cells, in the form of (B6A)F1 peritoneal or irradiated T cell-depleted spleen cells, or in the form of B10 nonirradiated T cell-depleted spleen cells. These results suggested that (TG)-A--L-specific Ir genes expressed by B cells controlled the ability of these cells to be induced to respond to SRBC by (TG)-A--L- responding T cells, implying that direct contact between the SRBC- binding B cell precursor and the (TG)-A--L-responsive helper T cells was required. Analogous results were obtained for keyhold limpet hemocyanin (KLH)-driven bystander help using KLH-primed F1 T cells restricted to interact with cells on only one of the parental haplotypes by maturing them in parental bone marrow chimeras. It was hypothesized that bystander help was mediated by nonspecific uptake of antigen [(TG)-A--L or KLH] by SRBC-specific b cells and subsequent display of the antigen on the B cell surface in association with Ir of I-region gene products, in a fashion similar to the M0, where it was then recognized by helper T cells. Such an explanation was supported by the observation that high concentrations of antigen were required to elicit bystander help. This hypothesis raises the possibility of B cell processing of antigen bound to its immunoglobulin receptor and subsequent presentation of antigen to helper T cells.
Full Text
The Full Text of this article is available as a PDF (941.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augustin A. A., Coutinho A. Specific T helper cells that activate B cells polyclonally. In vitro enrichment and cooperative function. J Exp Med. 1980 Mar 1;151(3):587–601. doi: 10.1084/jem.151.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
- Corradin G., Etlinger H. M., Chiller J. M. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell-dependent proliferative response with lymph node cells from primed mice. J Immunol. 1977 Sep;119(3):1048–1053. [PubMed] [Google Scholar]
- Erb P., Feldmann M. The role of macrophages in the generation of T-helper cells. II. The genetic control of the macrophage-T-cell interaction for helper cell induction with soluble antigens. J Exp Med. 1975 Aug 1;142(2):460–472. doi: 10.1084/jem.142.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldmann M., Basten A. Cell interactions in the immune response in vitro. 3. Specific collaboration across a cell impermeable membrane. J Exp Med. 1972 Jul 1;136(1):49–67. doi: 10.1084/jem.136.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillis S., Union N. A., Baker P. E., Smith K. A. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J Exp Med. 1979 Jun 1;149(6):1460–1476. doi: 10.1084/jem.149.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greaves M. F., Brown G. Purification of human T and B lymphocytes. J Immunol. 1974 Jan;112(1):420–423. [PubMed] [Google Scholar]
- Greenstein J. L., Leary J., Horan P., Kappler J. W., Marrack P. Flow sorting of antigen-binding B cell subsets. J Immunol. 1980 Mar;124(3):1472–1481. [PubMed] [Google Scholar]
- Hartmann K. U. Induction of a hemolysin response in vitro. Interaction of cells of bone marrow origin and thymic origin. J Exp Med. 1970 Dec 1;132(6):1267–1278. doi: 10.1084/jem.132.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwell L., Kappler J. W., Marrack P. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources. J Immunol. 1976 May;116(5):1379–1384. [PubMed] [Google Scholar]
- Harwell L., Skidmore B., Marrack P., Kappler J. Concanavalin A-inducible, interleukin-2-producing T cell hybridoma. J Exp Med. 1980 Oct 1;152(4):893–904. doi: 10.1084/jem.152.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffeld J. T., Marrack P., Kappler J. W. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. IV. Development of a model system demonstrating responsiveness of two T cell functions to HGG in vitro. J Immunol. 1976 Nov;117(5 PT2):1953–1959. [PubMed] [Google Scholar]
- Hünig T. H., Schimpl A., Wecker E. Mechanism of T-cell help in the immune response to soluble protein antigens II. Reconstitution of primary and secondary in vitro immune responses to dinitrophenyl-carrier conjugates by T-cell-replacing factor. J Exp Med. 1977 May 1;145(5):1228–1236. doi: 10.1084/jem.145.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hünig T., Schimpl A. Studies on the generation and expression of H-2-controlled T helper function in chimeric mice: evidence for two levels of H-2 resitriction. Eur J Immunol. 1979 Sep;9(9):730–736. doi: 10.1002/eji.1830090912. [DOI] [PubMed] [Google Scholar]
- Kappler J. W., Marrack P. C. Helper T cells recognise antigen and macrophage surface components simultaneously. Nature. 1976 Aug 26;262(5571):797–799. doi: 10.1038/262797a0. [DOI] [PubMed] [Google Scholar]
- Kappler J. W., Marrack P. The role of H-2 linked genes in helper T-cell function. IV. Importance of T-cell genotype and host environment in I-region and Ir gene expression. J Exp Med. 1978 Dec 1;148(6):1510–1522. doi: 10.1084/jem.148.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kappler J. W., Marrack P. The role of H-2-linked genes in helper T-cell function. I. In vitro expression in B cells of immune response genes controlling helper T-cell activity. J Exp Med. 1977 Dec 1;146(6):1748–1764. doi: 10.1084/jem.146.6.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz D. H., Graves M., Dorf M. E., Dimuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex. J Exp Med. 1975 Jan 1;141(1):263–268. doi: 10.1084/jem.141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz D. H., Hamaoka T., Dorf M. E., Maurer P. H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. IV. Involvement of the immune response (Ir) gene in the control of lymphocyte interactions in responses controlled by the gene. J Exp Med. 1973 Sep 1;138(3):734–739. doi: 10.1084/jem.138.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loh D., Ross A. H., Hale A. H., Baltimore D., Eisen H. N. Synthetic phospholipid vesicles containing a purified viral antigen and cell membrane proteins stimulate the development of cytotoxic T lymphocytes. J Exp Med. 1979 Nov 1;150(5):1067–1074. doi: 10.1084/jem.150.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ly I. A., Mishell R. I. Separation of mouse spleen cells by passage through columns of sephadex G-10. J Immunol Methods. 1974 Aug;5(3):239–247. doi: 10.1016/0022-1759(74)90108-2. [DOI] [PubMed] [Google Scholar]
- Marrack P. C., Kappler J. W. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. I. Evidence for their production by different T cells. J Immunol. 1975 Mar;114(3):1116–1125. [PubMed] [Google Scholar]
- Marrack P., Kappler J. W. Antigen-specific and nonspecific mediatiors of T cell/B cell cooperation. II. Two helper T cells distinguished by their antigen sensitivities. J Immunol. 1976 May;116(5):1373–1378. [PubMed] [Google Scholar]
- Marrack P., Kappler J. W. The role of H-2-linked genes in helper T-cell function. III. Expression of immune response genes for trinitrophenyl conjugates of poly-L(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys in B cells and macrophages. J Exp Med. 1978 Jun 1;147(6):1596–1610. doi: 10.1084/jem.147.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
- Panfili P. R., Dutton R. W. Alloantigen-induced T helper activity. I. Minimal genetic differences necessary to induce a positive allogeneic effect. J Immunol. 1978 Jun;120(6):1897–1901. [PubMed] [Google Scholar]
- Pierce C. W., Germain R. N., Kapp J. A., Benacerraf B. Secondary antibody responses in vitro to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) by (responder X nonresponder)F1 spleen cells stimulated by parental GAT-macrophages. J Exp Med. 1977 Dec 1;146(6):1827–1832. doi: 10.1084/jem.146.6.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreier M. H., Andersson J., Lernhardt W., Melchers F. Antigen-specific T-helper cells stimulate H-2-compatible and H-2-incompatible B-cell blasts polyclonally. J Exp Med. 1980 Jan 1;151(1):194–203. doi: 10.1084/jem.151.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrier R. D., Skidmore B. J., Kurnick J. T., Goldstine S. N., Chiller J. M. Propagation of antigen-specific T cell helper function in vitro. J Immunol. 1979 Dec;123(6):2525–2531. [PubMed] [Google Scholar]
- Sprent J. Restricted helper function of F1 hybrid T cells positively selected to heterologous erythrocytes in irradiated parental strain mice. II. Evidence for restrictions affecting helper cell induction and T-B collaboration, both mapping to the K-end of the H-2 complex. J Exp Med. 1978 Apr 1;147(4):1159–1174. doi: 10.1084/jem.147.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprent J. Role of the H-2 complex in induction of T helper cells in vivo. I. Antigen-specific selection of donor T cells to sheep erythrocytes in irradiated mice dependent upon sharing of H-2 determinants between donor and host. J Exp Med. 1978 Aug 1;148(2):478–489. doi: 10.1084/jem.148.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada T., Takemori T., Okumura K., Nonaka M., Tokuhisa T. Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia- and Ia+ helper T cells. J Exp Med. 1978 Feb 1;147(2):446–458. doi: 10.1084/jem.147.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tees R., Schreier M. H. Selective reconstitution of nude mice with long-term cultured and cloned specific helper T cells. Nature. 1980 Feb 21;283(5749):780–781. doi: 10.1038/283780a0. [DOI] [PubMed] [Google Scholar]
- Waldmann H., Munro A. T cell-dependent mediator in the immune response. II. Physical and biological properties. Immunology. 1974 Jul;27(1):53–64. [PMC free article] [PubMed] [Google Scholar]
- Waldmann H. T cell-dependent mediator in the immune response. III. The role of non-specific factor (NSF) in the in vitro immune response. Immunology. 1975 Mar;28(3):497–507. [PMC free article] [PubMed] [Google Scholar]