Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Nov 1;152(5):1311–1328. doi: 10.1084/jem.152.5.1311

Analysis of histocompatibility requirements for proliferative and helper T cell activity. T cell populations depleted of alloreactive cells by negative selection

PMCID: PMC2185998  PMID: 6159449

Abstract

T cell populations were prepared from donors immunized with hapten- carrier conjugates and were depleted of alloreactive cells by negative selection. This was accomplished by injection of the cells into H-2- disparate irradiated recipients and recovery from the thoracic duct after 18-40 h. The genetic requirements for the proliferative and helper activity of these populations was determined. The proliferative response to antigen presented on adherent, Thy-1-negative cells was determined, and a requirement for syngeneic antigen-presenting cells (APC) was demonstrated. The same T cells were assayed for their ability to give help to hapten primed B cells. It was shown that there was a requirement for syngeneic APC and for linked recognition of hapten and carrier determinants on the same molecule by the B cell and T cell. There was no requirement for the B cell to be H-2 compatible with the T cell. The requirement for linked recognition was taken as evidence that the responses in allogeneic combinations were not a result of positive allogeneic effects. Precisely comparable restrictions were found with positively selected cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. J., Fink P. J. The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells. Immunol Rev. 1978;42:3–19. doi: 10.1111/j.1600-065x.1978.tb00256.x. [DOI] [PubMed] [Google Scholar]
  2. Bottomly K., Mosier D. E. Mice whose B cells cannot produce the T15 idiotype also lack an antigen-specific helper T cell required for T15 expression. J Exp Med. 1979 Dec 1;150(6):1399–1409. doi: 10.1084/jem.150.6.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corradin G., Etlinger H. M., Chiller J. M. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell-dependent proliferative response with lymph node cells from primed mice. J Immunol. 1977 Sep;119(3):1048–1053. [PubMed] [Google Scholar]
  4. Heber-Katz E., Wilson D. B. Collaboration of allogeneic T and B lymphocytes in the primary antibody response to sheep erythrocytes in vitro. J Exp Med. 1975 Oct 1;142(4):928–935. doi: 10.1084/jem.142.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katz D. H., Benacerraf B. The function and interrelationships of T-cell receptors, Ir genes and other histocompatibility gene products. Transplant Rev. 1975;22:175–195. doi: 10.1111/j.1600-065x.1975.tb01559.x. [DOI] [PubMed] [Google Scholar]
  6. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keller D. M., Swierkosz J. E., Marrack P., Kappler J. W. Two types of functionally distinct, synergizing helper T cells. J Immunol. 1980 Mar;124(3):1350–1359. [PubMed] [Google Scholar]
  8. McDougal J. S., Cort S. P. Generation of T helper cells in vitro. IV. F1 T helper cells primed with antigen-pulsed parental macrophages are genetically restricted in their antigen-specific helper activity. J Immunol. 1978 Feb;120(2):445–451. [PubMed] [Google Scholar]
  9. Panfili P. R., Dutton R. W. Alloantigen-induced T helper activity. I. Minimal genetic differences necessary to induce a positive allogeneic effect. J Immunol. 1978 Jun;120(6):1897–1901. [PubMed] [Google Scholar]
  10. Paul W. E., Benacerraf B. Functional specificity of thymus- dependent lymphocytes. Science. 1977 Mar 25;195(4284):1293–1300. doi: 10.1126/science.320663. [DOI] [PubMed] [Google Scholar]
  11. Pierce C. W., Kapp J. A., Benacerraf B. Regulation by the H-2 gene complex of macrophage-lymphoid cell interactions in secondary antibody responses in vitro. J Exp Med. 1976 Aug 1;144(2):371–381. doi: 10.1084/jem.144.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pierce S. K., Klinman N. R. The allogeneic bisection of carrier-specific enhancement of monoclonal B-cell responses. J Exp Med. 1975 Nov 1;142(5):1165–1179. doi: 10.1084/jem.142.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
  14. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  15. Shevach E. M., Rosenthal A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J Exp Med. 1973 Nov 1;138(5):1213–1229. doi: 10.1084/jem.138.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sprent J. Restricted helper function of F1 hybrid T cells positively selected to heterologous erythrocytes in irradiated parental strain mice. I. Failure to collaborate with B cells of the opposite parental strain not associated with active suppression. J Exp Med. 1978 Apr 1;147(4):1142–1158. doi: 10.1084/jem.147.4.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sprent J. Restricted helper function of F1 hybrid T cells positively selected to heterologous erythrocytes in irradiated parental strain mice. II. Evidence for restrictions affecting helper cell induction and T-B collaboration, both mapping to the K-end of the H-2 complex. J Exp Med. 1978 Apr 1;147(4):1159–1174. doi: 10.1084/jem.147.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sprent J. Role of H-2 gene products in the function of T helper cells from normal and chimeric mice in vivo. Immunol Rev. 1978;42:108–137. doi: 10.1111/j.1600-065x.1978.tb00260.x. [DOI] [PubMed] [Google Scholar]
  20. Swain S. L., Dutton R. W. Negative allogeneic effects in vitro. I. Allogeneic T cells markedly suppress the secondary antibody-forming cell response. J Immunol. 1977 Jun;118(6):2262–2268. [PubMed] [Google Scholar]
  21. Swierkosz J. E., Rock K., Marrack P., Kappler J. W. The role of H-2 linked genes in helper T-cell function. II. Isolation on antigen-pulsed macrophages of two separate populations of F1 helper T cells each specific for antigen and one set of parental H-2 products. J Exp Med. 1978 Feb 1;147(2):554–570. doi: 10.1084/jem.147.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tada T., Takemori T., Okumura K., Nonaka M., Tokuhisa T. Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia- and Ia+ helper T cells. J Exp Med. 1978 Feb 1;147(2):446–458. doi: 10.1084/jem.147.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waldmann H., Pope H., Munro A. J. Cooperation across the histocompatibility barrier: H2d T cells primed to antigen in an H-2d environment can cooperate with H-2k B cells. J Exp Med. 1976 Dec 1;144(6):1707–1711. doi: 10.1084/jem.144.6.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamashita U., Shevach E. M. The histocompatibility restrictions on macrophage T-helper cell interaction determine the histocompatibility restrictions on T-helper cell B-cell interaction. J Exp Med. 1978 Nov 1;148(5):1171–1185. doi: 10.1084/jem.148.5.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zinkernagel R. M. Thymus and lymphohemopoietic cells: their role in T cell maturation in selection of T cells' H-2-restriction-specificity and in H-2 linked Ir gene control. Immunol Rev. 1978;42:224–270. doi: 10.1111/j.1600-065x.1978.tb00264.x. [DOI] [PubMed] [Google Scholar]
  26. von Boehmer H., Hudson L., Sprent J. Collaboration of histoincompatible T and B lymphocytes using cells from tetraparental bone marrow chimeras. J Exp Med. 1975 Oct 1;142(4):989–997. doi: 10.1084/jem.142.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES