Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Nov 1;152(5):1194–1309. doi: 10.1084/jem.152.5.1194

Role of accessory cells in B cell activation. III. Cellular analysis of primary immune response deficits in CBA/N mice: presence of an accessory cell-B cell interaction defect

PMCID: PMC2186008  PMID: 6159444

Abstract

The effect of the X-linked CBA/N genetic defect on the ability of mice to generate primary responses to thymic-dependent and thymic- independent antigens was assessed by comparing the ability of abnormal (CBA/N x DBA/2)F1 male mice and normal (DBA/2 x CBA/N)F1 male mice to generate 2,4,6-trinitrophenyl (TNP)-specific plaque-forming cell responses to TNP-keyhole limpet hemocyanin (KLH), TNP-conjugated Ficoll (TNP-Ficoll), TNP-Brucella abortus (BA), and TNP-lipopolysaccharide (LPS). The reciprocal F1 combinations used in this study differ genetically only in the origin of their X chromosome, but differ immunologically in that (CBA/N x DBA/2)F1 male mice express all the CBA/N immune abnormalities, whereas (DBA/2 x CBA/N)F1 male mice are immunologically normal. Analysis of thymic-dependent responses to TNP- KLH revealed that abnormal F1 mice were capable of generating primary responses in vivo to high doses of TNP-KLH, but failed to generate responses to suboptimal doses of TNP-KLH that were still immunogenic for normal F1 mice. Furthermore, under limiting in vitro micro-culture conditions, the abnormal F1 mice failed to generate primary thymic- dependent responses to any dose of TNP-KLH, even though under the identical conditions normal F1 mice consistently responded to a wide antigen dose range. The cellular basis of the failure of abnormal F1 mice to respond in vitro to TNP-KLH was investigated by assaying the ability of purified populations of accessory cells, T cells, and B cells from these mice to function in responses to TNP-KLH. The results of these experiments demonstrated that helper T cells and antigen- presenting accessory cells from abnormal F1 mice were competent and functioned as well as the equivalent cell populations from normal F1 mice. Instead, the failure of CBA/N mice to generate primary in vitro responses to TNP-KLH was solely the result of a defect in their B cell population such that B cells from these mice failed to be triggered by competent helper T cells and/or competent accessory cells. Similarly, the failure of abnormal F1 mice to respond either in vivo or in vitro to TNP-Ficoll was not the result of defective accessory cell presentation of TNP-Ficoll, but was the result of the failure of B cells from these mice to be activated by competent TNP-Ficoll- presenting accessory cells. In contrast to the failure of B cells from abnormal F1 mice to be activated in vitro in response to either TNP-KLH or TNP-Ficoll, B cells from abnormal F1 mice were triggered to respond to TNP-BA and TNP-LPS, antigens that did not require accessory cell presentation. The specific failure of B cells fron abnormal F1 mice to be activated in responses that required antigen-presentation by accessory cells suggested the possibility that the X-linked CBA/N genetic defect resulted in B cell populations that might be deficient in their ability to interact with antigen-presenting accessory cells...

Full Text

The Full Text of this article is available as a PDF (949.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Scher I., Sharrow S. O., Smith A. H., Paul W. E., Sachs D. H., Sell K. W. B-lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B-lymphocyte differentiation alloantigens. J Exp Med. 1977 Jan 1;145(1):101–110. doi: 10.1084/jem.145.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsbaugh D. F., Hansen C. T., Prescott B., Stashak P. W., Barthold D. R., Baker P. J. Genetic control of the antibody response to type 3 pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J Exp Med. 1972 Oct 1;136(4):931–949. doi: 10.1084/jem.136.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boswell H. S., Ahmed A., Scher I., Singer A. Role of accessory cells in B cell activation. II. The interaction of B cells with accessory cells results in the exclusive activation of an Lyb5+ B cell subpopulation. J Immunol. 1980 Sep;125(3):1340–1348. [PubMed] [Google Scholar]
  4. Fidler J. M., Morgan E. L., Weigle W. O. B lymphocyte differentiation in the CBA/N mouse: a delay in maturation rather than a total arrest. J Immunol. 1980 Jan;124(1):13–19. [PubMed] [Google Scholar]
  5. Hodes R. J., Singer A. Cellular and genetic control of antibody responses in vitro. I. Cellular requirements for the generation of genetically controlled primary IgM responses to soluble antigens. Eur J Immunol. 1977 Dec;7(12):892–897. doi: 10.1002/eji.1830071214. [DOI] [PubMed] [Google Scholar]
  6. Howie S., Feldmann M. Immune response (Ir) genes expressed at macrophage-B lymphocyte interactions. Nature. 1978 Jun 22;273(5664):664–666. doi: 10.1038/273664a0. [DOI] [PubMed] [Google Scholar]
  7. Huber B., Gershon R. K., Cantor H. Identification of a B-cell surface structure involved in antigen-dependent triggering: absence of this structure on B cells from CBA/N mutant mice. J Exp Med. 1977 Jan 1;145(1):10–20. doi: 10.1084/jem.145.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janeway C. A., Jr, Barthold D. R. An analysis of the defective response of CBA/N mice to T-dependent antigens. J Immunol. 1975 Oct;115(4):898–900. [PubMed] [Google Scholar]
  9. Jerne N. K., Nordin A. A. Plaque Formation in Agar by Single Antibody-Producing Cells. Science. 1963 Apr 26;140(3565):405–405. doi: 10.1126/science.140.3565.405. [DOI] [PubMed] [Google Scholar]
  10. Mond J. J., Scher I., Mosier D. E., Baese M., Paul W. E. T-independent responses in B cell-defective CBA/N mice to Brucella abortus and to trinitrophenyl (TNP) conjugates of Brucella abortus. Eur J Immunol. 1978 Jul;8(7):459–463. doi: 10.1002/eji.1830080703. [DOI] [PubMed] [Google Scholar]
  11. Mosier D. E., Mond J. J., Goldings E. A. The ontogeny of thymic independent antibody responses in vitro in normal mice and mice with an X-linked B cell defect. J Immunol. 1977 Dec;119(6):1874–1878. [PubMed] [Google Scholar]
  12. Mosier D. E., Scher I., Paul W. E. In vitro responses of CBA/N mice: spleen cells of mice with an X-linked defect that precludes immune responses to several thymus-independent antigens can respond to TNP-lipopolysaccharide. J Immunol. 1976 Oct;117(4):1363–1369. [PubMed] [Google Scholar]
  13. O'Toole M. M., Wortis H. H. A B cell subpopulation binds to macrophages: this binding can be disrupted by T cells. J Immunol. 1980 Apr;124(4):2010–2015. [PubMed] [Google Scholar]
  14. Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
  15. Scher I., Berning A. K., Asofsky R. X-linked B lymphocyte defect in CBA/N mice. IV. Cellular and environmental influences on the thymus dependent IgG anti-sheep red blood cell response. J Immunol. 1979 Jul;123(1):477–486. [PubMed] [Google Scholar]
  16. Scher I., Steinberg A. D., Berning A. K., Paul W. E. X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J Exp Med. 1975 Sep 1;142(3):637–650. doi: 10.1084/jem.142.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Singer A., Cowing C., Hathcock K. S., Dickler H. B., Hodes R. J. Cellular and genetic control of antibody responses in vitro. III. Immune response gene regulation of accessory cell function. J Exp Med. 1978 Jun 1;147(6):1611–1620. doi: 10.1084/jem.147.6.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Subbarao B., Mosier D. E., Ahmed A., Mond J. J., Scher I., Paul W. E. Role of a nonimmunoglobulin cell surface determinant in the activation of B lymphocytes by thymus-independent antigens. J Exp Med. 1979 Feb 1;149(2):495–506. doi: 10.1084/jem.149.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES