Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Nov 1;152(5):1340–1357. doi: 10.1084/jem.152.5.1340

Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins, and collagen by proteinases isolated from macrophages

PMCID: PMC2186009  PMID: 7000966

Abstract

We have investigated the ability of neutral and lysosomal enzymes of mouse macrophages to degrade the insoluble extracellular matrices secreted by smooth muscle cells, endothelial cells, and fibroblasts. Matrices produced by smooth muscle cells contained glycoproteins, elastin, and collagens, but matrices of endothelial cells and fibroblasts contained no elastin. Sequential enzyme digestion of residual matrix revealed that plasmin, a product of macrophage plasminogen activation, degraded 50-70% of the glycoprotein in the matrices but did not degrade the elastin or the collagens. Purified macrophage elastase degraded glycoprotein and elastin components but had no effect on the collagens. The rate of elastin degradation by macrophage elastase was decreased in the presence of the glycoproteins. In contrast, human granulocyte elastase effectively degraded the matrix glycoproteins, elastin, and, to a lesser extent, collagens, Mammalian collagenase degraded only collagens. Conditioned medium from resident and inflammatory macrophages, containing mixtures of the secreted proteinases, degraded the glycoprotein and elastin components of the matrices. However, conditioned medium was less effective in degrading matrix than comparable amounts of purified macrophage elastase because > 90% of the elastase in the medium was in a latent form. Inclusion of plasminogen in the assays accelerated degradation. In the presence of plasminogen, glycoproteins were degraded readily by medium from P388D1, pyran copolymer-, thioglycollate-, and periodate-elicited macrophages and, to a lesser extent, by medium from endotoxin-elicited and resident macrophages; medium from P388D1, thioglycollate-, and periodate- elicited macrophages was most effective in elastin degradation, and resident, endotoxin-elicited and pyran copolymer-elicited macrophages degraded almost no elastin. The macrophage cathepsins D and B degraded all the matrix components at an optimum pH of 5.5 and acted with the secreted neutral proteinases to degrade the connective tissue macromolecules to amino acids and oligopeptides. These data indicate that macrophages at inflammatory sites contain and secrete proteolytic enzymes that could degrade the extracellular matrix.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O. Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J Immunol. 1980 Jan;124(1):286–292. [PubMed] [Google Scholar]
  2. Anderson J. C. Glycoproteins of the connective tissue matrix. Int Rev Connect Tissue Res. 1976;7:251–322. doi: 10.1016/b978-0-12-363707-9.50012-5. [DOI] [PubMed] [Google Scholar]
  3. Bentley J. P., Hanson A. N. The hydroxyproline of elastin. Biochim Biophys Acta. 1969 Mar;175(2):339–344. doi: 10.1016/0005-2795(69)90011-7. [DOI] [PubMed] [Google Scholar]
  4. Buermann C. W., Oronsky A. L., Horowitz M. I. Chondroitin sulfate-degrading enzymes in human polymorphonuclear leukocytes: characteristics and evidence for concerted mechanism. Arch Biochem Biophys. 1979 Mar;193(1):277–283. doi: 10.1016/0003-9861(79)90032-8. [DOI] [PubMed] [Google Scholar]
  5. COHN Z. A., WIENER E. THE PARTICULATE HYDROLASES OF MACROPHAGES. I. COMPARATIVE ENZYMOLOGY, ISOLATION, AND PROPERTIES. J Exp Med. 1963 Dec 1;118:991–1008. doi: 10.1084/jem.118.6.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen L. B., Murray A., Segal R. A., Bushnell A., Walsh M. L. Studies on intercellular LETS glycoprotein matrices. Cell. 1978 Jun;14(2):377–391. doi: 10.1016/0092-8674(78)90123-x. [DOI] [PubMed] [Google Scholar]
  7. Deshmukh-Phadke K., Lawrence M., Nanda S. Synthesis of collagenase and neutral proteases by articular chondrocytes: stimulation by a macrophage-derived factor. Biochem Biophys Res Commun. 1978 Nov 14;85(1):490–496. doi: 10.1016/s0006-291x(78)80068-0. [DOI] [PubMed] [Google Scholar]
  8. Faris B., Salcedo L. L., Cook V., Johnson L., Foster J. A., Franzblau C. The synthesis of connective tissue protein in smooth muscle cells. Biochim Biophys Acta. 1976 Jan 5;418(1):93–103. doi: 10.1016/0005-2787(76)90330-0. [DOI] [PubMed] [Google Scholar]
  9. Gnosspelius G. Assay of elastase activity using trypsin as amplifying agent. Anal Biochem. 1977 Aug;81(2):315–319. doi: 10.1016/0003-2697(77)90702-3. [DOI] [PubMed] [Google Scholar]
  10. Gordon S., Unkeless J. C., Cohn Z. A. Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis: evidence for a two-stage process. J Exp Med. 1974 Oct 1;140(4):995–1010. doi: 10.1084/jem.140.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huybrechts-Godin G., Hauser P., Vaes G. Macrophage-fibroblast interactions in collagenase production and cartilage degradation. Biochem J. 1979 Dec 15;184(3):643–650. doi: 10.1042/bj1840643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaffe E. A., Minick C. R., Adelman B., Becker C. G., Nachman R. Synthesis of basement membrane collagen by cultured human endothelial cells. J Exp Med. 1976 Jul 1;144(1):209–225. doi: 10.1084/jem.144.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med. 1978 Jun 1;147(6):1779–1791. doi: 10.1084/jem.147.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones P. A. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1882–1886. doi: 10.1073/pnas.76.4.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones P. A., Scott-Burden T., Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):353–357. doi: 10.1073/pnas.76.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Light N. D., Bailey A. J. The chemistry of the collagen cross-links. Purification and characterization of cross-linked polymeric peptide material from mature collagen containing unknown amino acids. Biochem J. 1980 Feb 1;185(2):373–381. doi: 10.1042/bj1850373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liotta L. A., Abe S., Robey P. G., Martin G. R. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci U S A. 1979 May;76(5):2268–2272. doi: 10.1073/pnas.76.5.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Looker T., Berry C. L. The growth and development of the rat aorta. II. Changes in nucleic acid and scleroprotein content. J Anat. 1972 Oct;113(Pt 1):17–34. [PMC free article] [PubMed] [Google Scholar]
  20. Loskutoff D. J., Edgington T. E. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3903–3907. doi: 10.1073/pnas.74.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McDonald J. A., Baum B. J., Rosenberg D. M., Kelman J. A., Brin S. C., Crystal R. G. Destruction of a major extracellular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphonuclear leukocyte granules. Lab Invest. 1979 Mar;40(3):350–357. [PubMed] [Google Scholar]
  22. Muir L. W., Bornstein P., Ross R. A presumptive subunit of elastic fiber microfibrils secreted by arterial smooth-muscle cells in culture. Eur J Biochem. 1976 Apr 15;64(1):105–114. doi: 10.1111/j.1432-1033.1976.tb10278.x. [DOI] [PubMed] [Google Scholar]
  23. Nolan J. C., Ridge S., Oronsky A. L., Slakey L. L., Kerwar S. S. Synthesis of a collagenase inhibitor by smooth muscle cells in culture. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1183–1190. doi: 10.1016/0006-291x(78)91520-6. [DOI] [PubMed] [Google Scholar]
  24. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PIEZ K. A., GROSS J. The amino acid composition and morphology of some invertebrate and vertebrate collagens. Biochim Biophys Acta. 1959 Jul;34:24–39. doi: 10.1016/0006-3002(59)90229-x. [DOI] [PubMed] [Google Scholar]
  26. Padykula H. A., Campbell A. G. Cellular mechanisms involved in cyclic stromal renewal of the uterus. II. The albino rat. Anat Rec. 1976 Jan;184(1):27–48. doi: 10.1002/ar.1091840104. [DOI] [PubMed] [Google Scholar]
  27. Papajiannis S. P., Spina M., Gotte L. Sequential degradation and phagocytosis of heterologous elastin. Arch Pathol. 1970 May;89(5):434–439. [PubMed] [Google Scholar]
  28. Parakkal P. F. Involvement of macrophages in collagen resorption. J Cell Biol. 1969 Apr;41(1):345–354. doi: 10.1083/jcb.41.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ross R., Bornstein P. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol. 1969 Feb;40(2):366–381. doi: 10.1083/jcb.40.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rucker R. B., Tinker D. Structure and metabolism of arterial elastin. Int Rev Exp Pathol. 1977;17:1–47. [PubMed] [Google Scholar]
  31. Sage H., Crouch E., Bornstein P. Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry. 1979 Nov 27;18(24):5433–5442. doi: 10.1021/bi00591a028. [DOI] [PubMed] [Google Scholar]
  32. Schnyder J., Baggiolini M. Role of phagocytosis in the activation of macrophages. J Exp Med. 1978 Dec 1;148(6):1449–1457. doi: 10.1084/jem.148.6.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sear C. H., Kewley M. A., Jones C. J., Grant M. E., Jackson D. S. The identification of glycoproteins associated with elastic-tissue microfibrils. Biochem J. 1978 Mar 15;170(3):715–718. doi: 10.1042/bj1700715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  36. Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Virca G. D., Travis J., Hall P. K., Roberts R. C. Purification of human alpha-2-macroglobulin by chromatography on Cibacron Blue Sepharose. Anal Biochem. 1978 Aug 15;89(1):274–278. doi: 10.1016/0003-2697(78)90750-9. [DOI] [PubMed] [Google Scholar]
  38. Werb Z., Aggeler J. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1839–1843. doi: 10.1073/pnas.75.4.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Werb Z. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions. J Exp Med. 1978 Jun 1;147(6):1695–1712. doi: 10.1084/jem.147.6.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Werb Z., Foley R., Munck A. Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteinases in a macrophage line. J Immunol. 1978 Jul;121(1):115–121. [PubMed] [Google Scholar]
  41. Werb Z., Gordon S. Elastase secretion by stimulated macrophages. Characterization and regulation. J Exp Med. 1975 Aug 1;142(2):361–377. doi: 10.1084/jem.142.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Werb Z., Gordon S. Secretion of a specific collagenase by stimulated macrophages. J Exp Med. 1975 Aug 1;142(2):346–360. doi: 10.1084/jem.142.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Werb Z., Mainardi C. L., Vater C. A., Harris E. D., Jr Endogenous activiation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N Engl J Med. 1977 May 5;296(18):1017–1023. doi: 10.1056/NEJM197705052961801. [DOI] [PubMed] [Google Scholar]
  44. Werb Z., Reynolds J. J. Immunochemical studies with a specific antiserum to rabbit fibroblast collagenase. Biochem J. 1975 Dec;151(3):655–663. doi: 10.1042/bj1510655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yu S. Y., Yoshida A. The fate of 14C-elastin in the peritoneal cavity of rats. I. Biochemical studies. Lab Invest. 1977 Aug;37(2):143–149. [PubMed] [Google Scholar]
  46. de Clerck Y. A., Jones P. A. The effect of ascorbic acid on the nature and production of collagen and elastin by rat smooth-muscle cells. Biochem J. 1980 Jan 15;186(1):217–225. doi: 10.1042/bj1860217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES