Abstract
The functional role of cell surface Ia antigens has been studied for in vitro antibody responses, using as a probe the ability of anti-Ia reagents to inhibit these responses. A hybridoma monoclonal anti-Ia reagent specific for a product of I-Ak (Ia.17) profoundly inhibited in vitro antibody responses to TNP-KLH by spleen cells of the I-Ak but not I-Ab haplotype. This inhibition by anti-I-Ak product, but not by interaction with T or B cell product, in spite of the fact that functional B cells as well as accessory cells could be shown to express the determinant detected by this hybridoma reagent. These results suggest that the Ia expressed by accessory cells in of unique functional importance in these responses. To further characterize the function of Ia antigens in this response system, the mechanism of anti- I-Ak inhibition was determined. The inhibition resulting from interaction of anti-I-Ak with accessory cell Ia was not mediated by nonspecific suppressor cells, nor was there nonspecific interference with accessory cell function as a result of the binding of anti-Ia antibody. The relationship between anti-Ia inhibition and T helper cell recognition of self determinations on accessory cells was analyzed using T cells from radiation bone marrow chimeras. It was demonstrated that (B10 X B10.A)F1 leads to B10 (F1 leads to B10) chimera T cells were able to cooperate with B10 (H-2b and I-Ab) but not B10.A (H-2a and I-Ak) accessory cells for responses to TNP-KLH; F1 leads to B10.A T cells were able to cooperate with B10.A but not B10 accessory cells; and both chimera populations were able to cooperate with (B10 X B10.A)F1 (F1) accessory cells. Monoclonal anti-I-Ak inhibited the cooperation of F1 leads to B10.A T cells with the same F1 accessory cells. Thus, inhibition by anti-I-Ak is dependent upon active helper T cell recognition of I-Ak-encoded determinants expressed on accessory cells. These findings demonstrate that T cells recognize self Ia determinants expressed on accessory cells, and that such recognition is required for the generation of T cell-dependent antibody responses.
Full Text
The Full Text of this article is available as a PDF (930.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- David C. S. Serologic and genetic aspects of murine Ia antigens. Transplant Rev. 1976;30:299–302. doi: 10.1111/j.1600-065x.1976.tb00224.x. [DOI] [PubMed] [Google Scholar]
- Hodes R. J., Ahmann G. B., Hathcock K. S., Dickler H. B., Singer A. Cellular and genetic control of antibody responses in vitro. IV. Expression of Ia antigens on accessory cells required for responses to soluble antigens including a response under Ir gene control. J Immunol. 1978 Oct;121(4):1501–1509. [PubMed] [Google Scholar]
- Hodes R. J., Singer A. Cellular and genetic control of antibody responses in vitro. I. Cellular requirements for the generation of genetically controlled primary IgM responses to soluble antigens. Eur J Immunol. 1977 Dec;7(12):892–897. doi: 10.1002/eji.1830071214. [DOI] [PubMed] [Google Scholar]
- JERNE N. K., NORDIN A. A. Plaque formation in agar by single antibody-producing cells. Science. 1963 Apr 26;140(3565):405–405. [PubMed] [Google Scholar]
- Klein J., Hauptfeld V. Ia antigens: their serology, molecular relationships, and their role in allograft reactions. Transplant Rev. 1976;30:83–100. [PubMed] [Google Scholar]
- Lake P., Clark E. A., Khorshidi M., Sunshine G. H. Production and characterization of cytotoxic Thy-1 antibody-secreting hybrid cell lines. Detection of T cell subsets. Eur J Immunol. 1979 Nov;9(11):875–886. doi: 10.1002/eji.1830091109. [DOI] [PubMed] [Google Scholar]
- Niederhuber J. E., Allen P. Role of I-region gene products in macrophage induction of an antibody response. II. Restriction at the level of T cell in recognition of I-J-subregion macrophage determinants. J Exp Med. 1980 May 1;151(5):1103–1113. doi: 10.1084/jem.151.5.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niederhuber J. E. The role of I region gene products in macrophage - T lymphocyte interaction. Immunol Rev. 1978;40:28–52. doi: 10.1111/j.1600-065x.1978.tb00400.x. [DOI] [PubMed] [Google Scholar]
- Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
- Pierce C. W., Kapp J. A., Solliday S. M., Dorf M. E., Benacerraf B. Immune responses in vitro. XI. Suppression of primary IgM and IgG plaque-forming cell responses in vitro by alloantisera against leukocyte alloantigens. J Exp Med. 1974 Oct 1;140(4):921–938. doi: 10.1084/jem.140.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs D. H., Cone J. L. A mouse B-cell alloantigen determined by gene(s) linked to the major histocompatibility complex. J Exp Med. 1973 Dec 1;138(6):1289–1304. doi: 10.1084/jem.138.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R. H., David C. S., Sachs D. H., Paul W. E. T lymphocyte-enriched murine peritoneal exudate cells. III. Inhibition of antigen-induced T lymphocyte Proliferation with anti-Ia antisera. J Immunol. 1976 Aug;117(2):531–540. [PubMed] [Google Scholar]
- Schwartz R. H., Fathman C. G., Sachs D. H. Inhibition of stimulation in murine mixed lymphocyte cultures with an alloantiserum directed against a shared Ia determinant. J Immunol. 1976 Apr;116(4):929–935. [PubMed] [Google Scholar]
- Shevach E. M., Green I., Paul W. E. Alloantiserum-induced inhibition of immune response gene product function. II. Genetic analysis of target antigens. J Exp Med. 1974 Mar 1;139(3):679–695. doi: 10.1084/jem.139.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shevach E. M., Paul W. E., Green I. Histocompatibility-linked immune response gene function in guinea pigs. Specific inhibition of antigen-induced lymphocyte proliferation by alloantisera. J Exp Med. 1972 Nov 1;136(5):1207–1221. doi: 10.1084/jem.136.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer A., Dickler H. B., Hodes R. J. Cellular and genetic control of antibody responses in vitro. II. Ir gene control of primary IgM responses to trinitrophenyl conjugates of poly-L-(Tyr,Glu)-poly-D,L-Ala--poly-L-Lys and poly-L-(His,Glu)-poly-D,L-Ala--poly-L-Lys. J Exp Med. 1977 Oct 1;146(4):1096–1107. doi: 10.1084/jem.146.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprent J. Restricted helper function of F1 hybrid T cells positively selected to heterologous erythrocytes in irradiated parental strain mice. II. Evidence for restrictions affecting helper cell induction and T-B collaboration, both mapping to the K-end of the H-2 complex. J Exp Med. 1978 Apr 1;147(4):1159–1174. doi: 10.1084/jem.147.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]