Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Dec 1;152(6):1699–1708. doi: 10.1084/jem.152.6.1699

Macrophage component gp160, a major trypsin-sensitive surface glycoprotein

PMCID: PMC2186029  PMID: 7452150

Abstract

Macrophages secrete a large number of proteases, implying in vivo exposure of the cell surface to proteolytic conditions. Mild trypsin treatment of 125I-labeled guinea pig peritoneal macrophages preferentially cleaves one surface component of apparent 160,000 mol wt. Similar trypsin treatment of macrophages with 3H-labeled carbohydrate surface moieties also cleaves a single 3H-labeled 160,000 mol wt glycoprotein, referred to as gp160. Nonreducing sodium dodecyl sulfate (SDS)-electrophoresis established that gp160 of trypsinized cells remains assembled in the membrane as a multichain disulfide- bonded molecule. gp160 was purified by detergent extraction, L. culinaris lectin affinity chromatography and DEAE-cellulose chromatography. The corresponding molecule from trypsinized cells was purified by the same procedure. Reducing SDS-electrophoresis of purified trypsinized 125I-labeled gp160 revealed two proteolytic fragments with apparent molecular weights of 85,000 and 71,000. Thus, mild trypsin treatment of macrophages preferentially cleaves a single surface protein, possibly at a single site. Because the two fragments of gp160 are accessible to lactoperoxidase and trypsin, both must be exposed on the membrane surface. The reactive carbohydrate site was found on the 85,000 mol wt fragment, which alone contains the 3H-label introduced into intact cells by neuraminidase, galactose, oxidase, and [3H]KBH4.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley C., Bitter-Suermann D., Hadding U., Brade V. In vitro synthesis of factor B of the alternative pathway of complement activation by mouse peritoneal macrophages. Eur J Immunol. 1976 Jun;6(6):393–398. doi: 10.1002/eji.1830060604. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Brade V., Hall R. E., Colten H. R. Biosynthesis of pro-C3, a precursor of the third component of complement. J Exp Med. 1977 Sep 1;146(3):759–765. doi: 10.1084/jem.146.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cammer W., Bloom B. R., Norton W. T., Gordon S. Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1554–1558. doi: 10.1073/pnas.75.3.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  6. Einstein L. P., Schneeberger E. E., Colten H. R. Synthesis of the second component of complement by long-term primary cultures of human monocytes. J Exp Med. 1976 Jan 1;143(1):114–126. doi: 10.1084/jem.143.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gahmberg C. G., Hakomori S. I. External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. J Biol Chem. 1973 Jun 25;248(12):4311–4317. [PubMed] [Google Scholar]
  8. Gordon S. Macrophage neutral proteinases and chronic inflammation. Ann N Y Acad Sci. 1976;278:176–189. doi: 10.1111/j.1749-6632.1976.tb47028.x. [DOI] [PubMed] [Google Scholar]
  9. Hall R. E., Colten H. R. Cell-free synthesis of the fourth component of guinea pig complement (C4): identification of a precursor of serum C4 (pro-C4). Proc Natl Acad Sci U S A. 1977 Apr;74(4):1707–1710. doi: 10.1073/pnas.74.4.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayman M. J., Crumpton M. J. Isolation of glycoproteins from pig lymphocyte plasma membrane using Lens culinaris phytohemagglutinin. Biochem Biophys Res Commun. 1972 May 26;47(4):923–930. doi: 10.1016/0006-291x(72)90581-5. [DOI] [PubMed] [Google Scholar]
  11. Heck L. W., Remold-O'Donnell E., Remold H. G. DFP-sensitive polypeptides of the guinea pig peritoneal macrophage. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1576–1583. doi: 10.1016/0006-291x(78)91401-8. [DOI] [PubMed] [Google Scholar]
  12. Janoff A., Rosenberg R., Galdston M. Elastase-like, esteroprotease activity in human and rabbit alveolar macrophage granules. Proc Soc Exp Biol Med. 1971 Apr;136(4):1054–1058. doi: 10.3181/00379727-136-35426. [DOI] [PubMed] [Google Scholar]
  13. Jones P. A., Scott-Burden T. Activated macrophages digest the extracellular matrix proteins produced by cultured cells. Biochem Biophys Res Commun. 1979 Jan 15;86(1):71–77. doi: 10.1016/0006-291x(79)90383-8. [DOI] [PubMed] [Google Scholar]
  14. KOSTKA V., CARPENTER F. H. INHIBITION OF CHYMOTRYPSIN ACTIVITY IN CRYSTALLINE TRYPSIN PREPARATIONS. J Biol Chem. 1964 Jun;239:1799–1803. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lavie G., Zucker-Franklin D., Franklin E. C. Degradation of serum amyloid A protein by surface-associated enzymes of human blood monocytes. J Exp Med. 1978 Oct 1;148(4):1020–1031. doi: 10.1084/jem.148.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Littman B. H., Ruddy S. Production of the second component of complement by human monocytes: stimulation by antigen-activated lymphocytes or lymphokines. J Exp Med. 1977 May 1;145(5):1344–1352. doi: 10.1084/jem.145.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MACKANESS G. B. THE IMMUNOLOGICAL BASIS OF ACQUIRED CELLULAR RESISTANCE. J Exp Med. 1964 Jul 1;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandle R., Jr, Kaplan A. P. Hageman factor substrates. Human plasma prekallikrein: mechanism of activation by Hageman factor and participation in hageman factor-dependent fibrinolysis. J Biol Chem. 1977 Sep 10;252(17):6097–6104. [PubMed] [Google Scholar]
  21. Morrison M. The determination of the exposed proteins on membranes by the use of lactoperoxidase. Methods Enzymol. 1974;32:103–109. doi: 10.1016/0076-6879(74)32013-7. [DOI] [PubMed] [Google Scholar]
  22. Müller W., Hanauske-Abel H., Loos M. Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: evidence for an independent production of the C1 subunits. J Immunol. 1978 Oct;121(4):1578–1584. [PubMed] [Google Scholar]
  23. OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parakkal P. F. Involvement of macrophages in collagen resorption. J Cell Biol. 1969 Apr;41(1):345–354. doi: 10.1083/jcb.41.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pearlstein E., Dienstman S. R., Defendi V. Identification of macrophage external membrane proteins and their possible role in cell adhesion. J Cell Biol. 1978 Oct;79(1):263–267. doi: 10.1083/jcb.79.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Radcliffe R., Nemerson Y. Activation and control of factor VII by activated factor X and thrombin. Isolation and characterization of a single chain form of factor VII. J Biol Chem. 1975 Jan 25;250(2):388–395. [PubMed] [Google Scholar]
  27. Remold H. G., Mednis A. D. Two migration inhibitory factors differ in density and susceptibility to neuraminidase and proteinases. J Immunol. 1979 May;122(5):1920–1925. [PubMed] [Google Scholar]
  28. Swenson R. P., Howard J. B. Structural characterization of human alpha2-macroglobulin subunits. J Biol Chem. 1979 Jun 10;254(11):4452–4456. [PubMed] [Google Scholar]
  29. Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. VAUGHAN R. B., BOYDEN S. V. INTERACTIONS OF MACROPHAGES AND ERYTHROCYTES. Immunology. 1964 Mar;7:118–126. [PMC free article] [PubMed] [Google Scholar]
  31. Wahl L. M., Wahl S. M., Mergenhagen S. E., Martin G. R. Collagenase production by endotoxin-activated macrophages. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3598–3601. doi: 10.1073/pnas.71.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yin H. L., Aley S., Bianco C., Cohn Z. A. Plasma membrane polypeptides of resident and activated mouse peritoneal macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2188–2191. doi: 10.1073/pnas.77.4.2188. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES