Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Dec 1;152(6):1720–1733. doi: 10.1084/jem.152.6.1720

Human autoantibodies that react with both cell nuclei and plasma membranes display specificity for the octamer of histones H2A, H2B, H3, and H4 in high salt

PMCID: PMC2186031  PMID: 6161202

Abstract

Sera of some patients with systemic lupus erythematosus and related diseases contain a polyclonal antibody population (cross-reactive antinuclear antibodies [X-ANA]) that react specifically with both core mononucleosomes and plasma membranes of viable nucleated cells. Native mononucleosomes and nucleosome cores assembled from long DNA and the inner histones were indistinguishable in terms of inhibition of binding of X-ANA to nuclei of tissue sections and to polynucleosomes on the walls of plastic tubes. In contrast, mononucleosomes selectively depleted of histones H2A and H2B did not inhibit these reactions. A method was developed for isolation of X-ANA from serum that took advantage of the dual specificity of these antibodies. Immunosedimentation in sucrose density gradients revealed that 125I- labeled Fab' fragments of highly pure X-ANA formed complexes with the inner histones H2A, H2B, H3, and H4 in 2 M NaCL, but not in 0.15 M salt. These results indicate that X-ANA recognize an epitope of the inner histone in 2 M salt, and that in 0.15 M NaCL this epitope is not formed unless the histones interact with DNA to generate a nucleosome structure. Furthermore, in light of the previous demonstration that the epitope is destroyed by trypsin, it may be localized in the N-terminal region of histone H2A or H2B.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axel R., Melchior W., Jr, Sollner-Webb B., Felsenfeld G. Specific sites of interaction between histones and DNA in chromatin. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4101–4105. doi: 10.1073/pnas.71.10.4101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bustin M. Immunological approaches to chromatin and chromosome structure and function. Curr Top Microbiol Immunol. 1979;88:105–142. doi: 10.1007/978-3-642-67331-3_3. [DOI] [PubMed] [Google Scholar]
  3. Eickbush T. H., Moudrianakis E. N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry. 1978 Nov 14;17(23):4955–4964. doi: 10.1021/bi00616a016. [DOI] [PubMed] [Google Scholar]
  4. Gavish M., Dwek R. A., Givol D. Comparison of the fine specificity of anti-dinitrophenyl-combining site composed of either VL dimer or VL and VH of protein 315. Biochemistry. 1977 Jul 12;16(14):3154–3159. doi: 10.1021/bi00633a018. [DOI] [PubMed] [Google Scholar]
  5. HOLMAN H. R., DEICHER H. R., KUNKEL H. G. The L. E. cell and the L. E. serum factors. Bull N Y Acad Med. 1959 Jul;35(7):409–418. [PMC free article] [PubMed] [Google Scholar]
  6. Hannestad K. Certain rheumatoid factors react with both IgG and an antigen associated with cell nuclei. Scand J Immunol. 1978;7(2):127–136. doi: 10.1111/j.1365-3083.1978.tb00435.x. [DOI] [PubMed] [Google Scholar]
  7. Hannestad K., Johannessen A. Polyclonal human antibodies to IgG (rheumatoid factors) which cross-react with cell nuclei. Scand J Immunol. 1976;5(5):541–547. doi: 10.1111/j.1365-3083.1976.tb00309.x. [DOI] [PubMed] [Google Scholar]
  8. Hannestad K., Stollar B. D. Certain rheumatoid factors react with nucleosomes. Nature. 1978 Oct 19;275(5681):671–673. doi: 10.1038/275671a0. [DOI] [PubMed] [Google Scholar]
  9. Isenberg I. Histones. Annu Rev Biochem. 1979;48:159–191. doi: 10.1146/annurev.bi.48.070179.001111. [DOI] [PubMed] [Google Scholar]
  10. Johnson P. M. IgM-rheumatoid factors cross-reactive with IgG and a cell nuclear antigen: apparent 'masking' in original serum. Scand J Immunol. 1979;9(5):461–466. doi: 10.1111/j.1365-3083.1979.tb03068.x. [DOI] [PubMed] [Google Scholar]
  11. Johnston M. F., Eisen H. N. Cross-reactions between 2, 4-dinitrophenyl and menadione (vitamin K3) and the general problem of antibody specificity. J Immunol. 1976 Oct;117(4):1189–1196. [PubMed] [Google Scholar]
  12. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  13. Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5;275(5679):416–420. doi: 10.1038/275416a0. [DOI] [PubMed] [Google Scholar]
  14. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michaelides M. C., Eisen H. N. The strange cross-reaction of menadione (vitamin K3) and 2,4-dinitrophenyl ligands with a myeloma protein and some conventional antibodies. J Exp Med. 1974 Sep 1;140(3):687–702. doi: 10.1084/jem.140.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NISONOFF A., WISSLER F. C., LIPMAN L. N., WOERNLEY D. L. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch Biochem Biophys. 1960 Aug;89:230–244. doi: 10.1016/0003-9861(60)90049-7. [DOI] [PubMed] [Google Scholar]
  17. Noll M., Zimmer S., Engel A., Dubochet J. Self-assembly of single and closely spaced nucleosome core particles. Nucleic Acids Res. 1980 Jan 11;8(1):21–42. doi: 10.1093/nar/8.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Olins A. L., Carlson R. D., Wright E. B., Olins D. E. Chromatin nu bodies: isolation, subfractionation and physical characterization. Nucleic Acids Res. 1976 Dec;3(12):3271–3291. doi: 10.1093/nar/3.12.3271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rekvig O. P., Hannestad K. Properties of antinuclear antibodies that cross-react with plasma membranes. Scand J Immunol. 1979;9(4):325–332. doi: 10.1111/j.1365-3083.1979.tb03170.x. [DOI] [PubMed] [Google Scholar]
  20. Rekvig O. P., Hannestad K. The specificity of human autoantibodies that react with both cell nuclei and plasma membranes: the nuclear antigen is present on core mononucleosomes. J Immunol. 1979 Dec;123(6):2673–2681. [PubMed] [Google Scholar]
  21. Richards F. F., Konigsberg W. H., Rosenstein R. W., Varga J. M. On the specificity of antibodies. Science. 1975 Jan 17;187(4172):130–137. doi: 10.1126/science.46122. [DOI] [PubMed] [Google Scholar]
  22. Searles R. P., Messner R. P., Bankhurst A. D. Cross--reactivity of antilymphocyte and antinuclear antibodies in systemic lupus erythematosus. Clin Immunol Immunopathol. 1979 Nov;14(3):292–299. doi: 10.1016/0090-1229(79)90155-7. [DOI] [PubMed] [Google Scholar]
  23. Shaw B. R., Herman T. M., Kovacic R. T., Beaudreau G. S., Van Holde K. E. Analysis of subunit organization in chicken erythrocyte chromatin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):505–509. doi: 10.1073/pnas.73.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simon R. H., Camerini-Otero R. D., Felsenfeld G. An octamer of histones H3 and H4 forms a compact complex with DNA of nucleosome size. Nucleic Acids Res. 1978 Dec;5(12):4805–4818. doi: 10.1093/nar/5.12.4805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sollner-Webb B., Felsenfeld G. A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry. 1975 Jul;14(13):2915–2920. doi: 10.1021/bi00684a019. [DOI] [PubMed] [Google Scholar]
  26. Sonoda S., Schlamowitz M. Studies of 125I trace labeling of immunoglobulin G by chloramine-T. Immunochemistry. 1970 Nov;7(11):885–898. doi: 10.1016/0019-2791(70)90051-0. [DOI] [PubMed] [Google Scholar]
  27. Stockley P. G., Thomas J. O. A nucleosome-like particle containing an octamer of the arginine-rich histones H3 and H4. FEBS Lett. 1979 Mar 1;99(1):129–135. doi: 10.1016/0014-5793(79)80264-1. [DOI] [PubMed] [Google Scholar]
  28. Stollar B. D. Reactions of systemic lupus erythematosus sera with histone fractions and histone-DNA complexes. Arthritis Rheum. 1971 Jul-Aug;14(4):485–492. doi: 10.1002/art.1780140408. [DOI] [PubMed] [Google Scholar]
  29. Streefkerk D. G., Manjula B. N., Glaudemans C. P. An interpretation of the apparent dual specificity of some murine myeloma immunoglobulins with inulinbinding activity. J Immunol. 1979 Feb;122(2):537–541. [PubMed] [Google Scholar]
  30. Tatchell K., Van Holde K. E. Reconstitution of chromatin core particles. Biochemistry. 1977 Nov 29;16(24):5295–5303. doi: 10.1021/bi00643a021. [DOI] [PubMed] [Google Scholar]
  31. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weintraub H., Palter K., Van Lente F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell. 1975 Sep;6(1):85–110. doi: 10.1016/0092-8674(75)90077-x. [DOI] [PubMed] [Google Scholar]
  33. Weintraub H., Van Lente F. Dissection of chromosome structure with trypsin and nucleases. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4249–4253. doi: 10.1073/pnas.71.10.4249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES