Abstract
Earlier studies have suggested that splenic T cell populations in nursling mice (less than 18 d of age) have Lyt cell surface antigens that identify them as less mature than their adult counterparts. Studies presented here, however, demonstrate that the expression of the Thy-1, Lyt-1, Lyt-2, and Lyt-3 T cell antigens is virtually identical in 14-d-old and adult T cell populations even though at 14 d, T cells constitute less than 10% of the total spleen cell population. Because the expression of these antigens on the immature (cortical) thymocyte population differs substantially from their expression on peripheral T cells, the maturity of splenic T cells as judged by these criteria is similar in nurslings and adults. Very few cells in the neonatal thymus 4 h after birth correspond, in terms of antigen expression, to the more mature (medullary) thymocyte population of adults, but such cells develop rapidly during the first few days of life. They are present, therefore, sufficiently early to serve as the immediate source of peripheral T cells, as they apparently do in the adult. This then suggests that the locations for the major T cell maturational events are established within the first 2 wk of life of the mouse and maintained as such thereafter. The use of monoclonal antibodies and quantitative immunofluorescence analysis in our studies probably explains the differences between our findings and those reported previously, which relied on cytotoxic depletion by alloantisera and complement to estimate the frequencies of cells carrying the Lyt differentiation antigens in nurslings.
Full Text
The Full Text of this article is available as a PDF (706.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beverley P. C., Woody J., Dunkley M., Feldmann M., McKenzie I. Separation of suppressor and killer T cells by surgace phenotype. Nature. 1976 Aug 5;262(5568):495–497. doi: 10.1038/262495a0. [DOI] [PubMed] [Google Scholar]
- Bonner W. A., Hulett H. R., Sweet R. G., Herzenberg L. A. Fluorescence activated cell sorting. Rev Sci Instrum. 1972 Mar;43(3):404–409. doi: 10.1063/1.1685647. [DOI] [PubMed] [Google Scholar]
- Cantor H., Boyse E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med. 1975 Jun 1;141(6):1376–1389. doi: 10.1084/jem.141.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor H., Simpson E., Sato V. L., Fathman C. G., Herzenberg L. A. Characterization of subpopulations of T lymphocytes. I. Separation and functional studies of peripheral T-cells binding different amounts of fluorescent anti-Thy 1.2 (theta) antibody using a fluorescence-activated cell sorter (FACS). Cell Immunol. 1975 Jan;15(1):180–196. doi: 10.1016/0008-8749(75)90174-4. [DOI] [PubMed] [Google Scholar]
- Chiscon M. Q., Golub E. S. Functional development of the interacting cells in the immune response. I. Development of T cell and B cell function. J Immunol. 1972 May;108(5):1379–1386. [PubMed] [Google Scholar]
- Fathman C. G., Small M., Herzenberg L. A., Weissman I. L. Thymus cell maturation. II. Differentiation of three "mature" subclasses in vivo. Cell Immunol. 1975 Jan;15(1):109–128. doi: 10.1016/0008-8749(75)90169-0. [DOI] [PubMed] [Google Scholar]
- Feldmann M., Beverley P. C., Dunkley M., Kontiainen S. Different Ly antigen phenotypes of in vitro induced helper and suppressor cells. Nature. 1975 Dec 18;258(5536):614–616. doi: 10.1038/258614a0. [DOI] [PubMed] [Google Scholar]
- Kisielow P., Hirst J. A., Shiku H., Beverley P. C., Hoffman M. K., Boyse E. A., Oettgen H. F. Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature. 1975 Jan 17;253(5488):219–220. doi: 10.1038/253219a0. [DOI] [PubMed] [Google Scholar]
- Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
- Ledbetter J. A., Rouse R. V., Micklem H. S., Herzenberg L. A. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980 Aug 1;152(2):280–295. doi: 10.1084/jem.152.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathieson B. J., Sharrow S. O., Campbell P. S., Asofsky R. An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry. Nature. 1979 Feb 8;277(5696):478–480. doi: 10.1038/277478a0. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Owen J. J. Thymus-derived lymphocytes: their distribution and role in the development of peripheral lymphoid tissues of the mouse. Eur J Immunol. 1971 Jan;1(1):27–30. doi: 10.1002/eji.1830010105. [DOI] [PubMed] [Google Scholar]
- Shiku H., Kisielow P., Bean M. A., Takahashi T., Boyse E. A., Oettgen H. F., Old L. J. Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. J Exp Med. 1975 Jan 1;141(1):227–241. doi: 10.1084/jem.141.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. B., Calderon R. A., Blaxland L. J. A new Thy-1 alloantigen as a temporal marker of T lymphocyte differentiation. Nature. 1978 Oct 26;275(5682):711–715. doi: 10.1038/275711a0. [DOI] [PubMed] [Google Scholar]
- Weissman I. L. Thymus cell maturation. Studies on the origin of cortisone-resistant thymic lymphocytes. J Exp Med. 1973 Feb 1;137(2):504–510. doi: 10.1084/jem.137.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yutoku M., Grossberg A. L., Stout R., Herzenberg L. A., Pressman D. Further studies on Th-B, a cell surface antigenic determinant present on mouse B cells, plasma cells and immature thymocytes. Cell Immunol. 1976 Apr;23(1):140–157. doi: 10.1016/0008-8749(76)90178-7. [DOI] [PubMed] [Google Scholar]