Abstract
By combining a newly established single-cell cytotoxicity assay in agarose (16) with estimations of the maximum natural killer (NK) potential (Vmax) by 51Cr release that percentage of target-binding cells (TBC), the fraction of active killers among TBC, the kinetics of single-cell cytotoxicity, and the recycling of effector cells was studied. Using nylon wool-passed peripheral lymphocytes, approximately 10% of the cells will bind to NK- susceptible target cell lines. Most of these have receptors for IgG. Some 50% will go on to kill T cell targets and some 20% to kill the standard target cell K-562. As the individual NK cell is shown to have the capacity to recycle, i.e., to kill more than one target cell in the 3-h test period, and as recycling seems to vary between individuals, there is no consistent correlation between the number of TBC and 51Cr-release values. It seems as if the single-cell cytotoxicity assay, as presently performed in agarose, is a valuable complement to Vmax determinations by 51Cr-release to study the different steps involved in the cytolytic process: recognition, enzyme activation, and effector cell recycling. The discrimination between these steps will probably be necessary to define mechanisms influencing NK cells in different disease states as well as in learning more about the normal function and regulation of the human NK system.
Full Text
The Full Text of this article is available as a PDF (959.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benczur M., Petrányl G. G., Pálffy G., Varga M., Tálas M., Kotsy B., Földes I., Hollán S. R. Dysfunction of natural killer cells in multiple sclerosis: a possible pathogenetic factor. Clin Exp Immunol. 1980 Mar;39(3):657–662. [PMC free article] [PubMed] [Google Scholar]
- Berke G. Interaction of cytotoxic T lymphocytes and target cells. Prog Allergy. 1980;27:69–133. [PubMed] [Google Scholar]
- Droller M. J., Schneider M. U., Perlmann P. A possible role of prostaglandins in the inhibition of natural and antibody-dependent cell-mediated cytotoxicity against tumor cells. Cell Immunol. 1978 Aug;39(1):165–177. doi: 10.1016/0008-8749(78)90091-6. [DOI] [PubMed] [Google Scholar]
- Grimm E. A., Thoma J. A., Bonavida B. Mechanism of cell-mediated cytotoxicity at the single cell level. II. Evidence for first-order kinetics of T cell-mediated cytolysis and for heterogeneity of lytic rate. J Immunol. 1979 Dec;123(6):2870–2877. [PubMed] [Google Scholar]
- Hansson M., Kärre K., Kiessling R., Roder J., Andersson B., Häyry P. Natural NK-cell targets in the mouse thymus: characteristics of the sensitive cell population. J Immunol. 1979 Aug;123(2):765–771. [PubMed] [Google Scholar]
- Herberman R. B., Djeu J., Kay H. D., Ortaldo J. R., Riccardi C., Bonnard G. D., Holden H. T., Fagnani R., Santoni A., Puccetti P. Natural killer cells: characteristics and regulation of activity. Immunol Rev. 1979;44:43–70. doi: 10.1111/j.1600-065x.1979.tb00267.x. [DOI] [PubMed] [Google Scholar]
- Jondal M., Klein E., Yefenof E. Surface markers on human B and T lymphocytes. VII. Rosette formation between peripheral T lymphocytes and lymphoblastoid B-cell lines. Scand J Immunol. 1975;4(3):259–266. doi: 10.1111/j.1365-3083.1975.tb02625.x. [DOI] [PubMed] [Google Scholar]
- Jondal M., Pross H. Surface markers on human b and t lymphocytes. VI. Cytotoxicity against cell lines as a functional marker for lymphocyte subpopulations. Int J Cancer. 1975 Apr 15;15(4):596–605. doi: 10.1002/ijc.2910150409. [DOI] [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
- Neighbour P. A., Bloom B. R. Absence of virus-induced lymphocyte suppression and interferon production in multiple sclerosis. Proc Natl Acad Sci U S A. 1979 Jan;76(1):476–480. doi: 10.1073/pnas.76.1.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roder J. C., Ahrlund-Richter L., Jondal M. Target-effector interaction in the human and murine natural killer system: specificity and xenogeneic reactivity of the solubilized natural killer-target structure complex and its loss in a somatic cell hybrid. J Exp Med. 1979 Sep 19;150(3):471–481. doi: 10.1084/jem.150.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roder J. C., Kiessling R. Target--effector interaction in the natural killer cell system. I. Covariance and genetic control of cytolytic and target-cell-binding subpopulations in the mouse. Scand J Immunol. 1978;8(2):135–144. doi: 10.1111/j.1365-3083.1978.tb00505.x. [DOI] [PubMed] [Google Scholar]
- Targan S., Jondal M. Monolayer immune complex (MIC) fractionation of Fc receptor bearing human spontaneous killer cells. J Immunol Methods. 1978;22(1-2):123–129. doi: 10.1016/0022-1759(78)90064-9. [DOI] [PubMed] [Google Scholar]
- Timonen T., Saksela E. Human natural cell-mediated cytotoxicity against fetal fibroblasts. II. Isolation and target cell specificity of the effector cells. Cell Immunol. 1978 Sep 15;40(1):69–78. doi: 10.1016/0008-8749(78)90316-7. [DOI] [PubMed] [Google Scholar]
- Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]