Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Apr 1;153(4):766–782. doi: 10.1084/jem.153.4.766

Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis

CF Nathan, BA Arrick, HW Murray, NM DeSantis, ZA Cohm
PMCID: PMC2186135  PMID: 7252413

Abstract

The basis of resistance to oxidative injury was studied in six murine tumor cell lines that differed 54-fold in their resistance to enzymatically generated H(2)0(2). The tumors varied 56.7-fold in their specific activity of catalase, 5.3-fold in glutathione peroxidase (GPO), 3.3-fold in glutathione reductase (GR), and 2.7-fold in glutathione. There was no correlation among the levels of the three enzymes, and tumor cell resistance to lysis by H(2)0(2). However, the logarithm of the flux of H(2)0(2) necessary to cause 50 percent lysis of the tumor cells correlated with their content of glutathione (r = 0.91). The protective role of glutathione was analyzed by blocking GR and GPO, the catalysts of the glutathione redox cycle. This was facilitated by the demonstration that the anti-neoplastic agent 1,3-bis-(2- chloroethyl)-l-nitrosourea (BCNU) was a potent inhibitor of GR in intact tumor cells. BCNU inactivated tumor cell GR with a 50 percent inhibitory dose of 11 μM and a t(l/2) of inhibition of 30 s. Complete inhibition of GR was attained with no effect on GPO or catalase. Tumor cells whose GR was inactivated by BCNU could be lysed by fluxes of H(2)0(2) to which they were otherwise completely resistant. They could be killed by phorbol myristate acetate (PMA)-stimulated, bacilli Calmette-Guerin-activated macrophages in numbers which were otherwise insufficient, and by nonactivated macrophages, which otherwise were ineffective. BCNU-treated target cells were also much more sensitive to antibody-dependent, macrophage-mediated cytolysis. However, such tumor cells were no more sensitive than controls to lysis by alloreactive T cells or by antibody plus complement. Next, we deprived tumor cells of selenium by passage in selenium-deficient mice. GPO was inhibited 85 percent in such cells, with no effect on GR or catalase. Tumor cells with reduced GPO activity were markedly sensitized to lysis by small fluxes of H(2)0(2) or by PMA-stimulated macrophages or granulocytes. In contrast, inhibition of catalase with aminotriazole had no effect on the sensitivity of three tumors to peroxide-mediated lysis, and had modest effects with two others. Thus, the oxidation-reduction cycle of glutathione serves as one of the major defense mechanisms of tumor cells against three related forms of oxidant injury: lysis by fluxes of H(2)0(2), by PMA-triggered macrophages, and by macrophages in the presence of anti-tumor antibody.

Full Text

The Full Text of this article is available as a PDF (994.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronin P. A., Mahaley M. S., Jr, Rudnick S. A., Dudka L., Donohue J. F., Selker R. G., Moore P. Prediction of BCNU pulmonary toxicity in patients with malignant gliomas: an assessment of risk factors. N Engl J Med. 1980 Jul 24;303(4):183–188. doi: 10.1056/NEJM198007243030403. [DOI] [PubMed] [Google Scholar]
  2. Babson J. R., Reed D. J. Inactivation of glutathione reductase by 2-chloroethyl nitrosourea-derived isocyanates. Biochem Biophys Res Commun. 1978 Jul 28;83(2):754–762. doi: 10.1016/0006-291x(78)91053-7. [DOI] [PubMed] [Google Scholar]
  3. Bass D. A., DeChatelet L. R., Burk R. F., Shirley P., Szejda P. Polymorphonuclear leukocyte bactericidal activity and oxidative metabolism during glutathione peroxidase deficiency. Infect Immun. 1977 Oct;18(1):78–84. doi: 10.1128/iai.18.1.78-84.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baumgartner W. A., Hill V. A., Wright E. T. Antioxidant effects in the development of Ehrlich ascites carcinoma. Am J Clin Nutr. 1978 Mar;31(3):457–465. doi: 10.1093/ajcn/31.3.457. [DOI] [PubMed] [Google Scholar]
  6. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 41-1980. N Engl J Med. 1980 Oct 16;303(16):927–933. doi: 10.1056/NEJM198010163031608. [DOI] [PubMed] [Google Scholar]
  7. Chan P. S., Chandler M., Beck L. V. Chromate inhibitions, in erythrocytes, of chemically stimulated increases in glucose oxidation via the hexosemonophosphate pathway. (HMP). Proc Soc Exp Biol Med. 1969 Jan;130(1):257–264. doi: 10.3181/00379727-130-33533. [DOI] [PubMed] [Google Scholar]
  8. Clark R. A., Klebanoff S. J. Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med. 1975 Jun 1;141(6):1442–1447. doi: 10.1084/jem.141.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark R. A., Klebanoff S. J. Role of the myeloperoxidase-H2O2-halide system in concanavalin A-induced tumor cell killing by human neutrophils. J Immunol. 1979 Jun;122(6):2605–2610. [PubMed] [Google Scholar]
  10. Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
  11. Colvin M., Cowens J. W., Brundrett R. B., Kramer B. S., Ludlum D. B. Decomposition of BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) in aqueous solution. Biochem Biophys Res Commun. 1974 Sep 23;60(2):515–520. doi: 10.1016/0006-291x(74)90270-8. [DOI] [PubMed] [Google Scholar]
  12. Doroshow J. H., Locker G. Y., Myers C. E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980 Jan;65(1):128–135. doi: 10.1172/JCI109642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frischer H., Ahmad T. Severe generalized glutathione reductase deficiency after antitumor chemotherapy with BCNU" [1,3-bis(chloroethyl)-1-nitrosourea]. J Lab Clin Med. 1977 May;89(5):1080–1091. [PubMed] [Google Scholar]
  14. Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
  15. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  16. Hafeman D. G., Lucas Z. J. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells: dependence on oxygen and the respiratory burst. J Immunol. 1979 Jul;123(1):55–62. [PubMed] [Google Scholar]
  17. Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
  18. Kosower N. S., Kosower E. M., Wertheim B., Correa W. S. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem Biophys Res Commun. 1969 Nov 6;37(4):593–596. doi: 10.1016/0006-291x(69)90850-x. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laskar P. A., Ayres J. W. Degradation of carmustine in aqueous media. J Pharm Sci. 1977 Aug;66(8):1073–1076. doi: 10.1002/jps.2600660805. [DOI] [PubMed] [Google Scholar]
  21. MARGOLIASH E., NOVOGRODSKY A. A study of the inhibition of catalase by 3-amino-1:2:4:-triazole. Biochem J. 1958 Mar;68(3):468–475. doi: 10.1042/bj0680468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montgomery J. A., James R., McCaleb G. S., Johnston T. P. The modes of decomposition of 1,3-bis(2-chloroethyl)-1-nitrosourea and related compounds. J Med Chem. 1967 Jul;10(4):668–674. doi: 10.1021/jm00316a033. [DOI] [PubMed] [Google Scholar]
  23. Murray H. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates. J Exp Med. 1980 Dec 1;152(6):1610–1624. doi: 10.1084/jem.152.6.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nathan C., Brukner L., Kaplan G., Unkeless J., Cohn Z. Role of activated macrophages in antibody-dependent lysis of tumor cells. J Exp Med. 1980 Jul 1;152(1):183–197. doi: 10.1084/jem.152.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nathan C., Cohn Z. Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J Exp Med. 1980 Jul 1;152(1):198–208. doi: 10.1084/jem.152.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oliver J. M., Albertini D. F., Berlin R. D. Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol. 1976 Dec;71(3):921–932. doi: 10.1083/jcb.71.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  32. Roos D., Weening R. S., Voetman A. A., van Schaik M. L., Bot A. A., Meerhof L. J., Loos J. A. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979 May;53(5):851–866. [PubMed] [Google Scholar]
  33. Rotruck J. T., Pope A. L., Ganther H. E., Hoekstra W. G. Prevention of oxidative damage to rat erythrocytes by dietary selenium. J Nutr. 1972 May;102(5):689–696. doi: 10.1093/jn/102.5.689. [DOI] [PubMed] [Google Scholar]
  34. Serfass R. E., Ganther H. E. Defective microbicidal activity in glutathione peroxidase-deficient neutrophils of selenium-deficient rats. Nature. 1975 Jun 19;255(5510):640–641. doi: 10.1038/255640a0. [DOI] [PubMed] [Google Scholar]
  35. Sternbach L. H. The benzodiazepine story. J Med Chem. 1979 Jan;22(1):1–7. doi: 10.1021/jm00187a001. [DOI] [PubMed] [Google Scholar]
  36. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  37. Weiss S. J., LoBuglio A. F., Kessler H. B. Oxidative mechanisms of monocyte-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1980 Jan;77(1):584–587. doi: 10.1073/pnas.77.1.584. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES