Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 May 1;153(5):1094–1101. doi: 10.1084/jem.153.5.1094

Accumulation of protoporphyrin IX from delta-aminolevulinic acid in bovine skin fibroblasts with hereditary erythropoietic protoporphyria. A gene-dosage effect

PMCID: PMC2186152  PMID: 6788885

Abstract

Bovine skin fibroblasts accumulated protoporphyrin IX when incubated in culture with the porphyrin-heme precursor, delta-aminolevulinic acid (ALA). Fibroblasts from cattle homozygous for erythropoietic protoporphyria (EPP) and with the clinical symptoms of the disease accumulated approximately sixfold greater amounts of protoporphyrin IX than cells from normal control animals. Cells from obligatory heterozygous animals, which are clinically normal, accumulated an intermediate level of protoporphyrin IX. When these cells were incubated with ALA and CaMg EDTA, all types of cells accumulated approximately the same amount of protoporphyrin IX (approximately 500 nmol/mg protein), suggesting that ferrochelatase activity was equally low after inhibition by treatment with CaMg EDTA in all cells. Thus the ratio of protoporphyrin IX accumulation from ALA in cultures treated with CaMg EDTA compared with controls treated with ALA alone was greatest in normal cells, least in EPP cells, and intermediate in the heterozygote cells. These findings suggest that the amount of protoporphyrin IX accumulation from ALA reflects the extent of deficiency of ferrochelatase and is proportional to the dosage of abnormal EPP gene in cultured fibroblasts. Similarly, stimulation of porphyrin accumulation by CaMg EDTA reflects diminished ferrochelatase activity in these cells. Thus, the results of this study demonstrate the usefulness of estimating protoporphyrin IX formation from ALA for the detection of an EPP gene defect in cultured bovine skin fibroblasts.

Full Text

The Full Text of this article is available as a PDF (450.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloomer J. R., Brenner D. A., Mahoney M. J. Study of factors causing excess protoporphyrin accumulation in cultured skin fibroblasts from patients with protoporphyria. J Clin Invest. 1977 Dec;60(6):1354–1361. doi: 10.1172/JCI108895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloomer J. R. Characterization of deficient heme synthase activity in protoporphyria with cultured skin fibroblasts. J Clin Invest. 1980 Feb;65(2):321–328. doi: 10.1172/JCI109675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonkowsky H. L., Bloomer J. R., Ebert P. S., Mahoney M. J. Heme synthetase deficiency in human protoporphyria. Demonstration of the defect in liver and cultured skin fibroblasts. J Clin Invest. 1975 Nov;56(5):1139–1148. doi: 10.1172/JCI108189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Granick S., Sinclair P., Sassa S., Grieninger G. Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J Biol Chem. 1975 Dec 25;250(24):9215–9225. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. PORRA R. J., JONES O. T. Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem J. 1963 Apr;87:181–185. doi: 10.1042/bj0870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. RUTH G. R., Schwartz S., Stephenson B. Bovine protoporphyria: the first nonhuman model of this hereditary photosensitizing disease. Science. 1977 Oct 14;198(4313):199–201. doi: 10.1126/science.905823. [DOI] [PubMed] [Google Scholar]
  8. Sassa S., Kappas A. Induction of aminolevulinate synthase and porphyrins in cultured liver cells maintained in chemically defined medium. Permissive effects of hormones on induction process. J Biol Chem. 1977 Apr 10;252(7):2428–2436. [PubMed] [Google Scholar]
  9. Sassa S., Solish G., Levere R. D., Kappas A. Studies in porphyria. IV. Expression of the gene defect of acute intermittent porphyria in cultured human skin fibroblasts and amniotic cells: prenatal diagnosis of the porphyric trait. J Exp Med. 1975 Sep 1;142(3):722–731. doi: 10.1084/jem.142.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sassa S., Zalar G. L., Kappas A. Studies in porphyria. VII. Induction of uroporphyrinogen-I synthase and expression of the gene defect of acute intermittent porphyria in mitogen-stimulated human lymphocytes. J Clin Invest. 1978 Feb;61(2):499–508. doi: 10.1172/JCI108961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sassa S., Zalar G. L., Poh-Fitzpatrick M. B., Kappas A. Studies in porphyria IX: Detection of the gene defect of erythropoietic protoporphyria in mitogen-stimulated human lymphocytes. Trans Assoc Am Physicians. 1979;92:268–276. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES