Abstract
We have generated an antigen-specific T suppressor clone that synthesizes 70,000-mol wt peptides that have antigen-specific-binding activity. Although these data also indicated that antigen-binding peptides completely inhibited the in vitro primary response to a complex antigen, suppression might reflect the combined biologic activities of many different 70-mol wt polypeptides or polypeptides associated with the 70,000-mol wt material by noncovalent interactions. The protein responsible for antigen-specific suppression was therefore purified to virtual homogeneity after sequential separation of internally labeled supernate peptides on Sephacryl S-200 and DEAE-cellulose columns followed by isoeleetrofocusing. The resulting protein is greater than 95 percent homogeneous according to sodium dodeeyl sulfate-polyacrylamide electrophoresis and represents two peptides having two very close but distinguishable isoelectric point values of approximately 5.0. The purified molecules are retained by columns coated with lentil lectin or antigen but not by columns coated with antisera specific for immunoglobulins, the I region of the major histocompatibility complex or Ly-1 or Ly-2 antigens. Less than 50 pg of the purified glycoprotein specifically and completely suppresses production of anti-sheep erythrocyte plaque-forming cell by mixtures of 10(6) Ly-1 cells and B cells and this is a result of inactivation of Ly-l-mediated helper function. Specific inactivation of T (Th) cells by the 70,000-mol wt molecule is rapid, specific, and requires the presence of antigen. The mechanism of specific suppression of Th function may depend upon two functionally distinct regions of the 70,000-mol wt molecule: one that binds antigen and a second that mediates suppression.
Full Text
The Full Text of this article is available as a PDF (897.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
- Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. V. Biochemical and serological characteristics of naturally occurring, soluble antigen-binding T-lymphocyte-derived molecules. Scand J Immunol. 1976;5(5):559–571. doi: 10.1111/j.1365-3083.1976.tb00311.x. [DOI] [PubMed] [Google Scholar]
- Fresno M., Nabel G., McVay-Boudreau L., Furthmayer H., Cantor H. Antigen-specific T lymphocyte clones. I. Characterization of a T lymphocyte clone expressing antigen-specific suppressive activity. J Exp Med. 1981 May 1;153(5):1246–1259. doi: 10.1084/jem.153.5.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman J. W., Lewis G. K., Primi D., Hornbeck P., Ruddle N. H. Antigen-specific molecules from murine T lymphocytes and T cell hybridomas. Mol Immunol. 1980 Jul;17(7):933–945. doi: 10.1016/0161-5890(80)90042-5. [DOI] [PubMed] [Google Scholar]
- Greene M. I., Bach B. A., Benacerraf B. Mechanisms of regulation of cell-mediated immunity. III. The characterization of azobenzenearsonate-specific suppressor T-cell-derived-suppressor factors. J Exp Med. 1979 May 1;149(5):1069–1083. doi: 10.1084/jem.149.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapp J. A., Araneo B. A., Clevinger B. L. Suppression of antibody and T cell proliferative responses to L-glutamic acid60-L-alanine30-L-tyrosine10 by a specific monoclonal T cell factor. J Exp Med. 1980 Jul 1;152(1):235–240. doi: 10.1084/jem.152.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krawinkel U., Cramer M., Melchers I., Imanishi-Kari T., Rajewsky K. Isolated hapten-binding receptors of sensitized lymphocytes. III. Evidence for idiotypic restriction of T-cell receptors. J Exp Med. 1978 May 1;147(5):1341–1347. doi: 10.1084/jem.147.5.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Mattingly J. A., Kaplan J. M., Janeway C. A., Jr Two distinct antigen-specific suppressor factors induced by the oral administration of antigen. J Exp Med. 1980 Sep 1;152(3):545–554. doi: 10.1084/jem.152.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor S., Eardley D., Shen F. W., Gershon R. K., Cone R. E. Isolation and partial characterization of antigen-binding molecules produced by in vitro 'educated' T cells. Mol Immunol. 1980 Jul;17(7):913–924. doi: 10.1016/0161-5890(80)90040-1. [DOI] [PubMed] [Google Scholar]
- Pacifico A., Capra J. D. T cell hybrids with arsonate specificity. I. Initial characterization of antigen-specific T cell products that bear a cross-reactive idiotype and determinants encoded by the murine major histocompatibility complex. J Exp Med. 1980 Nov 1;152(5):1289–1301. doi: 10.1084/jem.152.5.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce C. W., Germain R. N., Kapp J. A., Benacerraf B. Secondary antibody responses in vitro to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) by (responder X nonresponder)F1 spleen cells stimulated by parental GAT-macrophages. J Exp Med. 1977 Dec 1;146(6):1827–1832. doi: 10.1084/jem.146.6.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ptak W., Zembala M., Hanczakowski-Rewicka M., Asherson G. L. Nonspecific macrophage suppressor factor: its role in the inhibition of contact sensitivity to picryl chloride by specific T suppressor factor. Eur J Immunol. 1978 Sep;8(9):645–649. doi: 10.1002/eji.1830080908. [DOI] [PubMed] [Google Scholar]
- Puri J., Lonai P. Mechanism of antigen binding by T cells. H-2(I-A)-restricted binding of antigen plus Ia by helper cells. Eur J Immunol. 1980 Apr;10(4):273–281. doi: 10.1002/eji.1830100410. [DOI] [PubMed] [Google Scholar]
- Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
- Takemori T., Tada T. Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterization. J Exp Med. 1975 Nov 1;142(5):1241–1253. doi: 10.1084/jem.142.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi M., Saito T., Tada T. Antigen-specific suppressive factor produced by a transplantable I-J bearing T-cell hybridoma. Nature. 1979 Apr 5;278(5704):555–558. doi: 10.1038/278555a0. [DOI] [PubMed] [Google Scholar]
- Taniguchi M., Takei I., Tada T. Functional and molecular organisation of an antigen-specific suppressor factor from a T-cell hybridoma. Nature. 1980 Jan 10;283(5743):227–228. doi: 10.1038/283227a0. [DOI] [PubMed] [Google Scholar]
- Taniguchi M., Tokuhisa T. Cellular consequences in the suppression of antibody response by the antigen-specific T-cell factor. J Exp Med. 1980 Mar 1;151(3):517–527. doi: 10.1084/jem.151.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taussig M. J., Corvalan J. R., Binns R. M., Holliman A. Production of an H--2-related suppressor factor by a hybrid T-cell line. Nature. 1979 Jan 25;277(5694):305–308. doi: 10.1038/277305a0. [DOI] [PubMed] [Google Scholar]
- Theze J., Kapp J. A., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) III. Immunochemical properties of the GAT-specific suppressive factor. J Exp Med. 1977 Apr 1;145(4):839–856. doi: 10.1084/jem.145.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodland R., Cantor H. Idiotype-specific T helper cells are required to induce idiotype-positive B memory cells to secrete antibody. Eur J Immunol. 1978 Aug;8(8):600–606. doi: 10.1002/eji.1830080812. [DOI] [PubMed] [Google Scholar]