Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Jun 1;153(6):1684–1689. doi: 10.1084/jem.153.6.1684

Biogenesis of membrane-bound and secreted immunoglobulins. II. Two forms of the human alpha chain translated in vitro and processed in vivo as distinct polypeptide chains

PMCID: PMC2186187  PMID: 6973004

Abstract

Structural differences between alpha m (ther heavy chain of membrane IgA) and alpha s (the heavy chain of secretory IgA) were investigated. Messenger RNA from the human B lymphoblastoid line 32a.1, expressing both membrane and secretory IgA, was translated in a wheat germ cell- free system, resulting in the synthesis of two primary translation products for the alpha chain, that differed in molecular weight. In vivo pulse and pulse-chase experiments demonstrated that two early biosynthetic forms of the alpha chain were subsequently modified to yield three intracellular forms. As shown by endo-beta-N- acetylglucosaminidase H (endo H) treatment, these forms represent two alpha polypeptide chains, with varying compositions of N-linked oligosaccharides. Of the two forms of the alpha chain remaining after endo H treatment, only the form with the lowest molecular weight was associated with cells after long chase periods. The possible significance of this difference from the results with mu and delta chains is discussed. These results indicate that alpha m is distinguished from an alpha s by a difference in both primary structure and intracellular processing. The functional consequences of this distinction, previously shown for the heavy chain of membrane IgM (micrometer) and heavy chain of secretory IgM (microseconds), may reflect a principle common to the secretory and membrane forms of all immunoglobulin heavy chain classes.

Full Text

The Full Text of this article is available as a PDF (504.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Bothwell A. L., Knapp M., Siden E., Mather E., Koshland M., Baltimore D. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends. Cell. 1980 Jun;20(2):293–301. doi: 10.1016/0092-8674(80)90615-7. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Crago S. S., Kulhavy R., Prince S. J., Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med. 1978 Jun 1;147(6):1832–1837. doi: 10.1084/jem.147.6.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dobberstein B., Blobel G. Functional interaction of plant ribosomes with animal microsomal membranes. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1675–1682. doi: 10.1016/0006-291x(77)90637-4. [DOI] [PubMed] [Google Scholar]
  5. Erickson A. H., Blobel G. Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J Biol Chem. 1979 Dec 10;254(23):11771–11774. [PubMed] [Google Scholar]
  6. Fisher M. M., Nagy B., Bazin H., Underdown B. J. Biliary transport of IgA: role of secretory component. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2008–2012. doi: 10.1073/pnas.76.4.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frangione B., Wolfenstein-Todel C. Partial duplication in the "hinge" region of IgA 1 myeloma proteins. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3673–3676. doi: 10.1073/pnas.69.12.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu S. M., Winchester R. J., Feizi T., Walzer P. D., Kunkel H. G. Idiotypic specificity of surface immunoglobulin and the maturation of leukemic bone-marrow-derived lymphocytes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4487–4490. doi: 10.1073/pnas.71.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanover J. A., Lennarz W. J., Young J. D. Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations. J Biol Chem. 1980 Jul 25;255(14):6713–6716. [PubMed] [Google Scholar]
  10. Hurley J. N., Fu S. M., Kunkel H. G., McKenna G., Scharff M. D. Lymphoblastoid cell lines from patients with chronic lymphocytic leukemia: identification of tumor origin by idiotypic analysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5706–5710. doi: 10.1073/pnas.75.11.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kunkel H. G., Prendergast R. A. Subgroups of gamma-A immune globulins. Proc Soc Exp Biol Med. 1966 Jul;122(3):910–913. doi: 10.3181/00379727-122-31287. [DOI] [PubMed] [Google Scholar]
  12. Lamm M. E. Cellular aspects of immunoglobulin A. Adv Immunol. 1976;22:223–290. doi: 10.1016/s0065-2776(08)60550-7. [DOI] [PubMed] [Google Scholar]
  13. McCune J. M., Lingappa V. R., Fu S. M., Blobel G., Kunkel H. G. Biogenesis of membrane-bound and secreted immunoglobulins. I. Two distinct translation products of human mu-chain, with identical N-termini and different C-termini. J Exp Med. 1980 Aug 1;152(2):463–468. doi: 10.1084/jem.152.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mestecky J., Schrohenloher R. E., Kulhavy R., Wright G. P., Tomana M. Site of J chain attachment to human polymeric IgA. Proc Natl Acad Sci U S A. 1974 Feb;71(2):544–548. doi: 10.1073/pnas.71.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prahl J. W., Abel C. A., Grey H. M. Carboxy-terminal structure of the chain of human IgA myeloma proteins. Biochemistry. 1971 May 11;10(10):1808–1812. doi: 10.1021/bi00786a012. [DOI] [PubMed] [Google Scholar]
  16. Rogers J., Early P., Carter C., Calame K., Bond M., Hood L., Wall R. Two mRNAs with different 3' ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell. 1980 Jun;20(2):303–312. doi: 10.1016/0092-8674(80)90616-9. [DOI] [PubMed] [Google Scholar]
  17. Salsano F., Froland S. S., Natvig J. B., Michaelsen T. E. Same idiotype of B-lymphocyte membrane IgD and IgM. Formal evidence for monoclonality of chronic lymphocytic leukemia cells. Scand J Immunol. 1974;3(6):841–846. doi: 10.1111/j.1365-3083.1974.tb01321.x. [DOI] [PubMed] [Google Scholar]
  18. Singer P. A., Singer H. H., Williamson A. R. Different species of messenger RNA encode receptor and secretory IgM mu chains differing at their carboxy termini. Nature. 1980 May 29;285(5763):294–300. doi: 10.1038/285294a0. [DOI] [PubMed] [Google Scholar]
  19. TOMASI T. B., Jr, TAN E. M., SOLOMON A., PRENDERGAST R. A. CHARACTERISTICS OF AN IMMUNE SYSTEM COMMON TO CERTAIN EXTERNAL SECRETIONS. J Exp Med. 1965 Jan 1;121:101–124. doi: 10.1084/jem.121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  21. Vassalli P., Tartakoff A., Pink J. R., Jaton J. C. Biosynthesis of two forms of IgM heavy chains by normal mouse B lymphocytes. Membrane and secretory IgM. J Biol Chem. 1980 Dec 25;255(24):11822–11827. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES