Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Oct;136(1):5–9. doi: 10.1128/jb.136.1.5-9.1978

Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping.

K Motojima, I Yamato, Y Anraku
PMCID: PMC218625  PMID: 361707

Abstract

A series of mutants of Escherichia coli K-12 requiring a high concentration of L-proline for growth were isolated from a proline auxotroph strain, JE2133. Genetic studies of the mutants, PT19, PT21, and PT22, showed that all the mutations (proT) were point mutations, and these were mapped at 82 min on the E. coli genetic map. Intact cells and cytoplasmic membrane vesicles of these mutants were specifically defective in L-proline transport activity. Strain PT21 had no detectable activity of the L-proline transport carrier at all, and strains PT19 and PT22 had only 1/35 and 1/70, respectively, of the transport activity of the parental strain. The mutants were also shown to have a defect in proline-binding function of the carrier by measuring specific binding of proline to sonically disrupted membranes. These results indicate that the gene proT determines the function of proline carrier in the cytoplasmic membrane.

Full text

PDF
5

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma H., Itoh J., Anraku Y. Proton-dependent binding of proline to carrier in Escherichia coli membrane. FEBS Lett. 1977 Jun 15;78(2):173–176. doi: 10.1016/0014-5793(77)80299-8. [DOI] [PubMed] [Google Scholar]
  2. Amanuma H., Motojima K., Yamaguchi A., Anraku Y. Solubilization of a functionally active proline carrier from membranes of Escherichia coli with an organic solvent. Biochem Biophys Res Commun. 1977 Jan 24;74(2):366–373. doi: 10.1016/0006-291x(77)90313-8. [DOI] [PubMed] [Google Scholar]
  3. Anraku Y., Naraki T., Kanzaki S. Transport of sugars and amino acids in bacteria. VI. Changes induced by valine in the branched chain amino acid transport systems of Escherichia coli. J Biochem. 1973 Jun;73(6):1149–1161. doi: 10.1093/oxfordjournals.jbchem.a130186. [DOI] [PubMed] [Google Scholar]
  4. Anraku Y. The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli. J Biol Chem. 1967 Mar 10;242(5):793–800. [PubMed] [Google Scholar]
  5. Awazu S., Amanuma H., Morikawa A., Anraku Y. Transport of sugars and amino acids in bacteria. XVI. Theory and evaluation of a model for the membrane transport reaction mediated by a single carrier with three binding sites for substrate. J Biochem. 1975 Nov;78(5):1047–1056. doi: 10.1093/oxfordjournals.jbchem.a130982. [DOI] [PubMed] [Google Scholar]
  6. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berg C. M., Rossi J. J., Coleman J. V., Conlon M. Procedure for isolating mutants defective in metabolite transport or utilization. J Bacteriol. 1975 Mar;121(3):1216–1218. doi: 10.1128/jb.121.3.1216-1218.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dendinger S., Brill W. J. Regulation of proline degradation in Salmonella typhimurium. J Bacteriol. 1970 Jul;103(1):144–152. doi: 10.1128/jb.103.1.144-152.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANK L., RANHAND B. PROLINE METABOLISM IN ESCHERICHIA COLI. 3. THE PROLINE CATABOLIC PATHWAY. Arch Biochem Biophys. 1964 Aug;107:325–331. doi: 10.1016/0003-9861(64)90338-8. [DOI] [PubMed] [Google Scholar]
  10. Futai M. Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J Membr Biol. 1974;15(1):15–28. doi: 10.1007/BF01870079. [DOI] [PubMed] [Google Scholar]
  11. Goto F., Anraku Y. Transport of sugars and amino acids in bacteria. IX. Studies on the active transport reaction in sodium azide- and 2,4-dinitrophenol-sensitive mutants of Escherichia coli. J Biochem. 1974 Feb;75(2):243–251. doi: 10.1093/oxfordjournals.jbchem.a130391. [DOI] [PubMed] [Google Scholar]
  12. Halpern Y. S. Genetics of amino acid transport in bacteria. Annu Rev Genet. 1974;8:103–133. doi: 10.1146/annurev.ge.08.120174.000535. [DOI] [PubMed] [Google Scholar]
  13. Hirata H., Altendorf K., Harold F. M. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J Biol Chem. 1974 May 10;249(9):2939–2945. [PubMed] [Google Scholar]
  14. Hirota Y., Inuzuka M., Tomoeda M. Elective selection of proline-requiring mutants. J Bacteriol. 1966 Jun;91(6):2392–2392. doi: 10.1128/jb.91.6.2392-.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KESSEL D., LUBIN M. Transport of proline in Escherichia coli. Biochim Biophys Acta. 1962 Feb 12;57:32–43. doi: 10.1016/0006-3002(62)91074-0. [DOI] [PubMed] [Google Scholar]
  16. Kaback H. R., Stadtman E. R. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):920–927. doi: 10.1073/pnas.55.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaback H. R. Transport studies in bacterial membrane vesicles. Science. 1974 Dec 6;186(4167):882–892. doi: 10.1126/science.186.4167.882. [DOI] [PubMed] [Google Scholar]
  18. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  19. LUBIN M., KESSEL D. H., BUDREAU A., GROSS J. D. The isolation of bacterial mutants defective in amino acid transport. Biochim Biophys Acta. 1960 Aug 26;42:535–538. doi: 10.1016/0006-3002(60)90836-2. [DOI] [PubMed] [Google Scholar]
  20. Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
  21. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  22. Morikawa A., Suzuki H., Anraku Y. Transport of sugars and amino acids in bacteria. 8. Properties and regulation of the active transport reaction of proline in Escherichia coli. J Biochem. 1974 Feb;75(2):229–241. doi: 10.1093/oxfordjournals.jbchem.a130390. [DOI] [PubMed] [Google Scholar]
  23. Muraoka S., Terada H. 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile; a new powerful uncoupler of respiratory-chain phosphorylation. Biochim Biophys Acta. 1972 Aug 17;275(2):271–275. doi: 10.1016/0005-2728(72)90047-3. [DOI] [PubMed] [Google Scholar]
  24. Rowland I., Tristram H. Specificity of the Escherichia coli proline transport system. J Bacteriol. 1975 Sep;123(3):871–877. doi: 10.1128/jb.123.3.871-877.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tristram H., Neale S. The activity and specificity of the proline permease in wild-type and analogue-resistant strains of Escherichia coli. J Gen Microbiol. 1968 Jan;50(1):121–137. doi: 10.1099/00221287-50-1-121. [DOI] [PubMed] [Google Scholar]
  26. Wu T. T. A model for three-point analysis of random general transduction. Genetics. 1966 Aug;54(2):405–410. doi: 10.1093/genetics/54.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamato I., Anraku Y., Hirosawa K. Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes. J Biochem. 1975 Apr;77(4):705–718. doi: 10.1093/oxfordjournals.jbchem.a130774. [DOI] [PubMed] [Google Scholar]
  28. Yamato I., Anraku Y. Transport of sugars and amino acids in bacteria. XVIII. Properties of an isoleucine carrier in the cytoplasmic membrane vesicles of Escherichia coli. J Biochem. 1977 May;81(5):1517–1523. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES