Abstract
Mutations in ARO1 and ARO2 genes coding for enzymes involved in the common part of the aromatic amino acid pathway completely block the sporulation of Saccharomyces cerevisiae when in a homozygous state, whereas mutations in all the other genes of the same pathway do not. This effect is not due to the lack of any intermediate metabolite but rather to the accumulation of a metabolite preceding chorismic acid. Shikimic acid or one of its precursors was identified as the possible inhibitor. The presence of the three aromatic amino acids in the sporulation medium restores the ability to undergo meiosis. This seems not to be due to a feedback inhibition of the first enzymes of the pathway but rather to a competition between aromatic amino acids and the inhibitor on a site specific for the meiotic process. The inhibition of sporulation seems to occur at a very early step in meiosis, as indicated by the lack of premeiotic DNA synthesis in aro1 and aro2 mutants.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Colonna W. J., Gentile J. M., Magee P. T. Inhibiton by sulfanilamide of sporulation in Saccharomyces cerevisiae. Can J Microbiol. 1977 Jun;23(6):659–671. doi: 10.1139/m77-099. [DOI] [PubMed] [Google Scholar]
- Esposito M. S., Esposito R. E., Arnaud M., Halvorson H. O. Conditional mutants of meiosis in yeast. J Bacteriol. 1970 Oct;104(1):202–210. doi: 10.1128/jb.104.1.202-210.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito M. S., Esposito R. E. Genes controlling meiosis and spore formation in yeast. Genetics. 1974 Sep;78(1):215–225. doi: 10.1093/genetics/78.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito M. S., Esposito R. E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics. 1969 Jan;61(1):79–89. doi: 10.1093/genetics/61.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertner F. H., Cole K. W. A cluster-gene: evidence for one gene, one polypeptide, five enzymes. Biochem Biophys Res Commun. 1977 Mar 21;75(2):259–264. doi: 10.1016/0006-291x(77)91037-3. [DOI] [PubMed] [Google Scholar]
- Gibson F., Pittard J. Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev. 1968 Dec;32(4 Pt 2):465–492. [PMC free article] [PubMed] [Google Scholar]
- Hopper A. K., Magee P. T., Welch S. K., Friedman M., Hall B. D. Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Aug;119(2):619–628. doi: 10.1128/jb.119.2.619-628.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Küenzi M. T., Tingle M. A., Halvorson H. O. Sporulation of Saccharomyces cerevisiae in the absence of a functional mitochondrial genome. J Bacteriol. 1974 Jan;117(1):80–88. doi: 10.1128/jb.117.1.80-88.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence J., Cox G. B., Gibson F. Biosynthesis of ubiquinone in Escherichia coli K-12: biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J Bacteriol. 1974 Apr;118(1):41–45. doi: 10.1128/jb.118.1.41-45.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANNEY T. R., MORTIMER R. K. ALLELIC MAPPING IN YEAST BY X-RAY-INDUCED MITOTIC REVERSION. Science. 1964 Feb 7;143(3606):581–583. doi: 10.1126/science.143.3606.581. [DOI] [PubMed] [Google Scholar]
- MILLER J. J., CALVIN J., TREMAINE J. H. A study of certain factors influencing sporulation of Saccharomyces cerevisiae. Can J Microbiol. 1955 Aug;1(7):560–573. doi: 10.1139/m55-068. [DOI] [PubMed] [Google Scholar]
- MILLER J. J., HOFFMANN-OSTENHOF C. SPORE FORMATION AND GERMINATION IN SACCHAROMYCES. Z Allg Mikrobiol. 1964;4:273–294. doi: 10.1002/jobm.3630040404. [DOI] [PubMed] [Google Scholar]
- MILLER J. J., HOFFMANN-OSTENHOF O., SCHEIBER E., GABRIEL O. The metabolism of yeast sporulation. III. Respiration of sporulating and growing cells. Can J Microbiol. 1959 Apr;5(2):153–159. doi: 10.1139/m59-019. [DOI] [PubMed] [Google Scholar]
- Magee P. T., Hopper A. K. Protein synthesis in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Sep;119(3):952–960. doi: 10.1128/jb.119.3.952-960.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magni G E, Von Borstel R C. Different Rates of Spontaneous Mutation during Mitosis and Meiosis in Yeast. Genetics. 1962 Aug;47(8):1097–1108. doi: 10.1093/genetics/47.8.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuris P. Mise en évidence et séparation génétique de deux PODH aldolases soumises à la rétroinihibition chez S. cerevisiae. C R Acad Sci Hebd Seances Acad Sci D. 1967 Feb 27;264(9):1197–1199. [PubMed] [Google Scholar]
- Puglisi P. P., Zennaro E. Erythromycin inhibition of sporulation in Saccharomyces cerevisiae. Experientia. 1971 Aug;27(8):963–964. doi: 10.1007/BF02135775. [DOI] [PubMed] [Google Scholar]
- Roth R. Chromosome replication during meiosis: identification of gene functions required for premeiotic DNA synthesis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3087–3091. doi: 10.1073/pnas.70.11.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbarger H. E. Regulation of amino acid metabolism. Annu Rev Biochem. 1969;38:323–370. doi: 10.1146/annurev.bi.38.070169.001543. [DOI] [PubMed] [Google Scholar]
- Vezinhet F., Roger M., Pellecuer M., Galzy P. Genetic control of some metabolic modifications during the sporulation of Saccharomyces cerevisiae Hansen. J Gen Microbiol. 1974 Apr;81(2):373–382. doi: 10.1099/00221287-81-2-373. [DOI] [PubMed] [Google Scholar]
- Wejksnora P. J., Haber J. E. Methionine-dependent synthesis of ribosomal ribonucleic acid during sporulation and vegetative growth of Saccharomyces cerevisiae. J Bacteriol. 1974 Dec;120(3):1344–1355. doi: 10.1128/jb.120.3.1344-1355.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]