Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Jul 1;154(1):35–47. doi: 10.1084/jem.154.1.35

Haplotype-specific suppression of antibody responses in vitro. I. Generation of genetically restricted suppressor T cells by neonatal treatment with semiallogeneic spleen cells

CM Sorensen, CW Pierce
PMCID: PMC2186404  PMID: 6454756

Abstract

C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products.

Full Text

The Full Text of this article is available as a PDF (808.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BILLINGHAM R. E., BRENT L. Acquired tolerance of foreign cells in newborn animals. Proc R Soc Lond B Biol Sci. 1956 Nov 13;146(922):78–90. doi: 10.1098/rspb.1956.0073. [DOI] [PubMed] [Google Scholar]
  2. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  3. Cantor H., Hugenberger J., McVay-Boudreau L., Eardley D. D., Kemp J., Shen F. W., Gershon R. K. Immunoregulatory circuits among T-cell sets. Identification of a subpopulation of T-helper cells that induces feedback inhibition. J Exp Med. 1978 Oct 1;148(4):871–877. doi: 10.1084/jem.148.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elson C. J., Taylor R. B. The suppressive effect of carrier priming on the response to a hapten-carrier conjugate. Eur J Immunol. 1974 Oct;4(10):682–687. doi: 10.1002/eji.1830041009. [DOI] [PubMed] [Google Scholar]
  5. Erb P., Feldmann M. The role of macrophages in the generation of T-helper cells. II. The genetic control of the macrophage-T-cell interaction for helper cell induction with soluble antigens. J Exp Med. 1975 Aug 1;142(2):460–472. doi: 10.1084/jem.142.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  7. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. I. Development of primary and secondary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1107–1120. doi: 10.1084/jem.138.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. II. Cellular requirements for the development of primary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1121–1132. doi: 10.1084/jem.138.5.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katz D. H., Graves M., Dorf M. E., Dimuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex. J Exp Med. 1975 Jan 1;141(1):263–268. doi: 10.1084/jem.141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuperman O. J., Sollinger H. W., Bach F. H. Tolerance induction to H-2 central region target antigens: in vivo/in vitro correlations. Scand J Immunol. 1977;6(5):555–562. doi: 10.1111/j.1365-3083.1977.tb02120.x. [DOI] [PubMed] [Google Scholar]
  11. Okumura K., Herzenberg L. A., Murphy D. B., McDevitt H. O., Herzenberg L. A. Selective expression of H-2 (i-region) loci controlling determinants on helper and suppressor T lymphocytes. J Exp Med. 1976 Sep 1;144(3):685–698. doi: 10.1084/jem.144.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pierce C. W., Johnson B. M., Gershon H. E., Asofsky R. Immune responses in vitro. 3. Development of primary gamma-M, gamma-G, and gamma-A plaque-forming cell responses in mouse spleen cell cultures stimulated with heterologous erythrocytes. J Exp Med. 1971 Aug 1;134(2):395–416. doi: 10.1084/jem.134.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pierce C. W., Kapp J. A., Benacerraf B. Regulation by the H-2 gene complex of macrophage-lymphoid cell interactions in secondary antibody responses in vitro. J Exp Med. 1976 Aug 1;144(2):371–381. doi: 10.1084/jem.144.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pierce S. K., Klinman N. R. The allogeneic bisection of carrier-specific enhancement of monoclonal B-cell responses. J Exp Med. 1975 Nov 1;142(5):1165–1179. doi: 10.1084/jem.142.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. I. Regulation of mixed lymphocyte reactions by alloantigen-activated thymus-derived lymphocytes. J Exp Med. 1974 Dec 1;140(6):1588–1603. doi: 10.1084/jem.140.6.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. II. A genetically restricted suppressor of mixed lymphocyte reactions released by alloantigen-activated spleen cells. J Exp Med. 1975 Dec 1;142(6):1391–1402. doi: 10.1084/jem.142.6.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. III. I-region control of suppressor cell interaction with responder cells in mixed lymphocyte reactions. J Exp Med. 1976 Mar 1;143(3):672–677. doi: 10.1084/jem.143.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
  19. Rosenthal A. S., Shevach E. M. The function of macrophages in T-lymphocyte antigen recognition. Contemp Top Immunobiol. 1976;5:47–90. [PubMed] [Google Scholar]
  20. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  21. Sorensen C. M., Pierce C. W. Haplotype-specific suppression of antibody responses in vitro. II. Suppressor factor produced by T cells and T cell hybridomas from mice treated as neonates with semiallogeneic spleen cells. J Exp Med. 1981 Jul 1;154(1):48–59. doi: 10.1084/jem.154.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Streilein J. W., Klein J. Neonatal tolerance induction across regions of H-2 complex. J Immunol. 1977 Dec;119(6):2147–2150. [PubMed] [Google Scholar]
  23. Streilein J. W., Klein J. Neonatal tolerance of H-2 alloantigens. I. I region modulation of tolerance potential of K and D antigens. Proc R Soc Lond B Biol Sci. 1980 Apr 22;207(1169):461–474. doi: 10.1098/rspb.1980.0034. [DOI] [PubMed] [Google Scholar]
  24. Tada T., Taniguchi M., David C. S. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med. 1976 Sep 1;144(3):713–725. doi: 10.1084/jem.144.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taylor R. B., Basten A. Suppressor cells in humoral immunity and tolerance. Br Med Bull. 1976 May;32(2):152–157. doi: 10.1093/oxfordjournals.bmb.a071348. [DOI] [PubMed] [Google Scholar]
  26. Zitron I. M., Mosier D. E., Paul W. E. The role of surface IgD in the response to thymic-independent antigens. J Exp Med. 1977 Dec 1;146(6):1707–1718. doi: 10.1084/jem.146.6.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES