Abstract
Evidence for the formation of an unstable intermediate in the synthesis of quinolinate from aspartate and dihydroxyacetone phosphate by Escherichia coli was obtained using toluenized cells of nadA and nadB mutants of this organism and partially purified A and B proteins in dialysis and membrane cone experiments. The results of these experiments indicate that the nadB gene product forms an unstable compound from aspartate in the presence of flavine adenine dinucleotide, and that this compound is then condensed with dihydroxyacetone phosphate to form quinolinate in a reaction catalyzed by the nadA gene product.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDREOLI A. J., IKEDA M., NISHIZUKA Y., HAYAISHI O. Quinolinic acid: a precursor to nicotinamide adenine dinucleotide in Escherichia coli. Biochem Biophys Res Commun. 1963 Jul 18;12:92–97. doi: 10.1016/0006-291x(63)90241-9. [DOI] [PubMed] [Google Scholar]
- Ahmad F., Moat A. G. Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae. J Biol Chem. 1966 Feb 25;241(4):775–780. [PubMed] [Google Scholar]
- Chen J. L., Tritz G. J. Isolation of a metabolite capable of differentially supporting the growth of nicotinamide adenine dinucleotide auxotrophs of Escherichia coli. J Bacteriol. 1975 Jan;121(1):212–218. doi: 10.1128/jb.121.1.212-218.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Tritz G. J. Detection of precursors of quinolinic acid in Escherichia coli. Microbios. 1976;16(65-66):207–218. [PubMed] [Google Scholar]
- GHOLSON R. K., UEDA I., OGASAWARA N., HENDERSON L. M. THE ENZYMATIC CONVERSION OF QUINOLINATE TO NICOTINIC ACID MONONUCLEOTIDE IN MAMMALIAN LIVER. J Biol Chem. 1964 Apr;239:1208–1214. [PubMed] [Google Scholar]
- Griffith G. R., Chandler J. L., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product from the nadA gene product and its purification. Eur J Biochem. 1975 May;54(1):239–245. doi: 10.1111/j.1432-1033.1975.tb04133.x. [DOI] [PubMed] [Google Scholar]
- Jackson R. W., DeMoss J. A. Effects of toluene on Escherichia coli. J Bacteriol. 1965 Nov;90(5):1420–1425. doi: 10.1128/jb.90.5.1420-1425.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr T. J., Tritz G. J. Cross-feeding of Escherichia coli mutants defective in the biosynthesis of nicotinamide adenine dinucleotide. J Bacteriol. 1973 Sep;115(3):982–986. doi: 10.1128/jb.115.3.982-986.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lundquist R., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. II. Niacin starvation. J Biol Chem. 1973 Jul 25;248(14):5137–5143. [PubMed] [Google Scholar]
- Ogasawara N., Chandler J. L., Gholson R. K., Rosser R. J., Andreoli A. J. Biosynthesis of quinolinic acid in a cell-free system. Biochim Biophys Acta. 1967 Jun 13;141(1):199–201. doi: 10.1016/0304-4165(67)90265-6. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., YATES R. A. Pyrimidine biosynthesis in Escherichia coli. J Biol Chem. 1956 Aug;221(2):743–756. [PubMed] [Google Scholar]
- Sakakibara S., Wicks F. D., Gholson R. K. Occurrence in mammalian liver of a protein which replaces the B protein of E. coli quinolinate synthetase. Biochem Biophys Res Commun. 1977 May 9;76(1):158–166. doi: 10.1016/0006-291x(77)91681-3. [DOI] [PubMed] [Google Scholar]
- Scott T. A., Bellion E., Mattey M. The conversion of N-formyl-L-aspartate into nicotinic acid by extracts of Clostridium butylicum. Eur J Biochem. 1969 Sep;10(2):318–323. doi: 10.1111/j.1432-1033.1969.tb00692.x. [DOI] [PubMed] [Google Scholar]
- Suzuki N., Carlson J., Griffith G., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. V. Properties of the quinolinic acid synthetase system. Biochim Biophys Acta. 1973 Apr 28;304(2):309–315. doi: 10.1016/0304-4165(73)90249-3. [DOI] [PubMed] [Google Scholar]
- Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tritz G. J., Matney T. S., Chandler J. L., Gholson R. K. Chromosomal location of the C gene involved in the biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli K-12. J Bacteriol. 1970 Oct;104(1):45–49. doi: 10.1128/jb.104.1.45-49.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tritz G. J., Matney T. S., Gholson R. K. Mapping of the nadB locus adjacent to a previously undescribed purine locus in Escherichia coli K-12. J Bacteriol. 1970 May;102(2):377–381. doi: 10.1128/jb.102.2.377-381.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
