Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Sep 1;154(3):964–977. doi: 10.1084/jem.154.3.964

Chromosome assignment of the tumor-specific antigen of a 3- methylcholanthrene-induced mouse sarcoma

PMCID: PMC2186453  PMID: 7276830

Abstract

Chemically induced sarcomas of inbred mice express antigens that are distinct and specific for each individual tumor. Chromosome assignment of tumor-specific antigens would help to elucidate the genetic basis of their diversity. Expression of the serologically defined Meth A sarcoma antigen is not suppressed in hybrid cells containing a complete foreign (Chinese hamster) genome. Chromosome and serologic analysis of microcell hybrids between Meth A sarcoma cells and Chinese hamster cells shows a clear correlation of Meth A antigen expression with the presence of the distal region of chromosome 12 (bands F1 and F2). Chromosome 16 may also be implicated. The significance of the close linkage of genes determining Meth A antigen expression with the immunoglobulin heavy chain gene cluster (on chromosome 12) and the lambda light chain genes (on chromosome 16) is discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basombrío M. A., Prehn R. T. Studies on the basis for diversity and time of appearance of antigens in chemically induced tumors. Natl Cancer Inst Monogr. 1972 Dec;35:117–124. [PubMed] [Google Scholar]
  2. Binz H., Wigzell H., Bazin H. T-cell idiotypes are linked to immunoglobulin heavy chain genes. Nature. 1976 Dec 16;264(5587):639–642. doi: 10.1038/264639a0. [DOI] [PubMed] [Google Scholar]
  3. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. I. Demonstration of similar or identical idiotypes on IgG molecules and T-cell receptors with specificity for the same alloantigens. J Exp Med. 1975 Jul 1;142(1):197–211. doi: 10.1084/jem.142.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodmer W. F. New genetic model for allelism at histocompatibility and other complex loci: polymorphism for control of gene expression. Transplant Proc. 1973 Dec;5(4):1471–1475. [PubMed] [Google Scholar]
  5. Brack C., Hirama M., Lenhard-Schuller R., Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978 Sep;15(1):1–14. doi: 10.1016/0092-8674(78)90078-8. [DOI] [PubMed] [Google Scholar]
  6. Cory S., Adams J. M. Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell. 1980 Jan;19(1):37–51. doi: 10.1016/0092-8674(80)90386-4. [DOI] [PubMed] [Google Scholar]
  7. D'Eustachio P., Bothwell A. L., Takaro T. K., Baltimore D., Ruddle F. H. Chromosomal location of structural genes encoding murine immunoglobulin lambda light chains. Genetics of murine lambda light chains. J Exp Med. 1981 Apr 1;153(4):793–800. doi: 10.1084/jem.153.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D'Eustachio P., Pravtcheva D., Marcu K., Ruddle F. H. Chromosomal location of the structural gene cluster encoding murine immunoglobulin heavy chains. J Exp Med. 1980 Jun 1;151(6):1545–1550. doi: 10.1084/jem.151.6.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeLeo A. B., Shiku H., Takahashi T., John M., Old L. J. Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma. J Exp Med. 1977 Sep 1;146(3):720–734. doi: 10.1084/jem.146.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreyer W. J., Bennett J. C. The molecular basis of antibody formation: a paradox. Proc Natl Acad Sci U S A. 1965 Sep;54(3):864–869. doi: 10.1073/pnas.54.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ege T., Ringertz N. R. Preparation of microcells by enucleation of micronucleate cells. Exp Cell Res. 1974 Aug;87(2):378–382. doi: 10.1016/0014-4827(74)90494-7. [DOI] [PubMed] [Google Scholar]
  12. Eisen E. J., Legates J. E., Robison O. W. Selection for 12-day litter weight in mice. Genetics. 1970 Mar-Apr;64(3):511–532. [PMC free article] [PubMed] [Google Scholar]
  13. Fournier R. E., Ruddle F. H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):319–323. doi: 10.1073/pnas.74.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Francke U., Taggart R. T. Comparative gene mapping: order of loci on the X chromosome is different in mice and humans. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3595–3599. doi: 10.1073/pnas.77.6.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GLOBERSON A., FELDMAN M. ANTIGENIC SPECIFICITY OF BENZO(A)PYRENE-INDUCED SARCOMAS. J Natl Cancer Inst. 1964 Jun;32:1229–1243. doi: 10.1093/jnci/32.6.1229. [DOI] [PubMed] [Google Scholar]
  16. Germain R. N., Ju S. T., Kipps T. J., Benacerraf B., Dorf M. E. Shared idiotypic determinants on antibodies and T-cell-derived suppressor factor specific for the random terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med. 1979 Mar 1;149(3):613–622. doi: 10.1084/jem.149.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gillin F. D., Roufa D. J., Beaudet A. L., Caskey C. T. 8-Azaguanine resistance in mammalian cells. I. Hypoxanthine-guanine phosphoribosyltransferase. Genetics. 1972 Oct;72(2):239–252. doi: 10.1093/genetics/72.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hengartner H., Meo T., Müller E. Assignment of genes for immunoglobulin kappa and heavy chains to chromosomes 6 and 12 in mouse. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4494–4498. doi: 10.1073/pnas.75.9.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Invernizzi G., Parmiani G. Tumour-associated transplantation antigens of chemically induced sarcomata cross reacting with allogeneic histocompatibility antigens. Nature. 1975 Apr 24;254(5502):713–714. doi: 10.1038/254713a0. [DOI] [PubMed] [Google Scholar]
  20. Jha K. K., Ozer H. L. Expression of transformation in cell hybrids. I. Isolation and application of density-inhibited Balb/3T3 cells deficient in hypoxanthine phosphoribosyltransferase and resistant to ouabain. Somatic Cell Genet. 1976 May;2(3):215–223. doi: 10.1007/BF01538960. [DOI] [PubMed] [Google Scholar]
  21. KLEIN G., SJOGREN H. O., KLEIN E., HELLSTROM K. E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res. 1960 Dec;20:1561–1572. [PubMed] [Google Scholar]
  22. Klein G., Klein E. Are methylcholanthrene-induced sarcoma-associated, rejection-inducing (TSTA) antigens, modified forms of H-2 or linked determinants? Int J Cancer. 1975 Jun 15;15(6):879–887. doi: 10.1002/ijc.2910150603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kozak C., Nichols E., Ruddle F. H. Gene linkage analysis in the mouse by somatic cell hybridization: assignment of adenine phosphoribosyltransferase to chromosome 8 and alpha-galactosidase to the X chromosome. Somatic Cell Genet. 1975 Oct;1(4):371–382. doi: 10.1007/BF01538668. [DOI] [PubMed] [Google Scholar]
  24. Krawinkel U., Cramer M., Melchers I., Imanishi-Kari T., Rajewsky K. Isolated hapten-binding receptors of sensitized lymphocytes. III. Evidence for idiotypic restriction of T-cell receptors. J Exp Med. 1978 May 1;147(5):1341–1347. doi: 10.1084/jem.147.5.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kucherlapati R. S., Hilwig I., Gropp A., Ruddle F. H. Mammalian chromosome identification in interspecific hybride cells using "Hoechst 33258". Humangenetik. 1975;27(1):9–14. [PubMed] [Google Scholar]
  26. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  27. Lappé M. A. Evidence for the antigenicity of papillomas induced by 3-methylcholanthrene. J Natl Cancer Inst. 1968 Apr;40(4):823–846. [PubMed] [Google Scholar]
  28. Law L. W., DuBois G. C., Rogers M. J., Appella E., Pierotti M. A., Parmiani G. Tumor rejection activity of antigens isolated from the membranes of a methylcholanthrene-induced sarcoma, C-1, bearing alien H-2 antigens. Transplant Proc. 1980 Mar;12(1):46–49. [PubMed] [Google Scholar]
  29. Leinwand L. A., Kozak C. A., Ruddle F. H. Assignment of the genes for triose phosphate isomerase to chromosome 6 and tripeptidase-1 to chromosome 10 in Mus musculus by somatic cell hybridization. Somatic Cell Genet. 1978 Mar;4(2):233–240. doi: 10.1007/BF01538987. [DOI] [PubMed] [Google Scholar]
  30. Leinwand L., Fournier R. E., Nichols E. A., Ruddle F. H. Assignment of the gene for adenosine kinase to chromosome 14 in Mus musculus by somatic cell hybridization. Cytogenet Cell Genet. 1978;21(1-2):77–85. doi: 10.1159/000130880. [DOI] [PubMed] [Google Scholar]
  31. Max E. E., Seidman J. G., Leder P. Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3450–3454. doi: 10.1073/pnas.76.7.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Meo T., Douglas T., Rijnbeek A. M. Glyoxalase I polymorphism in the mouse: a new genetic marker linked to H-2. Science. 1977 Oct 21;198(4314):311–313. doi: 10.1126/science.910130. [DOI] [PubMed] [Google Scholar]
  33. Meo T., Johnson J., Beechey C. V., Andrews S. J., Peters J., Searle A. G. Linkage analyses of murine immunoglobulin heavy chain and serum prealbumin genes establish their location on chromosome 12 proximal to the T (5;12) 31H breakpoint in band 12F1. Proc Natl Acad Sci U S A. 1980 Jan;77(1):550–553. doi: 10.1073/pnas.77.1.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Natori T., Law L. W., Appella E. Biological and biochemical properties of Nonidet P40-solubilized and partially purified tumor-specific antigens of the transplantation type from plasma membranes of a methylcholanthrene-induced sarcoma. Cancer Res. 1977 Sep;37(9):3406–3413. [PubMed] [Google Scholar]
  35. Nesbitt M. N., Francke U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma. 1973;41(2):145–158. doi: 10.1007/BF00319691. [DOI] [PubMed] [Google Scholar]
  36. Nichols E. A., Ruddle F. H. A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels. J Histochem Cytochem. 1973 Dec;21(12):1066–1081. doi: 10.1177/21.12.1066. [DOI] [PubMed] [Google Scholar]
  37. PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
  38. Rogers M. J., Appella E., Pierotti M. A., Invernizzi G., Parmiani G. Biochemical characterization of alien H-2 antigens expressed on a methylcholanthrene-induced tumor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1415–1419. doi: 10.1073/pnas.76.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sumner A. T. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972 Nov;75(1):304–306. doi: 10.1016/0014-4827(72)90558-7. [DOI] [PubMed] [Google Scholar]
  40. Wigler M. H., Weinstein I. B. A preparative method for obtaining enucleated mammalian cells. Biochem Biophys Res Commun. 1975 Apr 7;63(3):669–674. doi: 10.1016/s0006-291x(75)80436-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES