Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Oct 1;154(4):1085–1099. doi: 10.1084/jem.154.4.1085

Induction of lymphoid cell chimerism in noninbred, histocompatible rabbits. A new model for studying allotype suppression in the rabbit

PMCID: PMC2186494  PMID: 7288363

Abstract

Noninbred rabbits, matched with regard to the major histocompatibility complex (RLA-A and RLA-D loci) but mismatched for Ig allotypes, served as donors (adult) and recipients (newborn) of lymphoid cells. Lasting chimerism regularly followed the transfer of 1 x 10(8)-3 x 10(8) spleen, lymph node, or bone marrow cells, as indicated by the continued production of Ig with allotypic determinants of both donor and recipient. Typically, Ig of donor allotype accounted for 25-50% of total allotypic Ig at 4 wk of age and the amount of donor Ig produced remained stable for up to 20 mo. Total allotypic Ig levels remained normal in the chimeric rabbits. "Chimeric drift" or a gradual diminution of donor products over a period of several months, occurred in some individuals. Transfer of lymphoid cells from allotype- suppressed adult donors to newborns of appropriate allotypes did not result in specific suppression of the target allotype in the recipients. Other experiments showed that lymphoid cells from suppressed donors adoptively transferred to histocompatible recipients continued to synthesize Ig of the nonsuppressed type only. The suitability of using an outbred population of histocompatible but allotype-mismatched rabbits for analyzing allotype suppression and other immunoregulatory phenomena is demonstrated by the results presented here.

Full Text

The Full Text of this article is available as a PDF (887.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler F. L., Adler L. T. Passive hemagglutination and hemolysis for estimation of antigens and antibodies. Methods Enzymol. 1980;70(A):455–466. doi: 10.1016/s0076-6879(80)70069-1. [DOI] [PubMed] [Google Scholar]
  2. Adler L. T., Adler F. L. Allotype suppression in the rabbit: persistence of passive antibody and the establishment or abrogation of chronic suppression. Cell Immunol. 1980 Sep 15;55(1):124–135. doi: 10.1016/0008-8749(80)90143-4. [DOI] [PubMed] [Google Scholar]
  3. Adler L. T., Adler F. L., Cohen C., Tissot R. G., Lancki D. Stable chimerism induced in noninbred rabbits by neonatal injection of spleen cells from allotype-suppressed adult donors. I. Replacement of hemopoietic tissue by donor cells. Transplantation. 1977 Nov;24(5):338–348. doi: 10.1097/00007890-197711000-00005. [DOI] [PubMed] [Google Scholar]
  4. Adler L. T., Adler F. L. Precocious recovery from allotype suppression in transiently chimeric rabbits. Cell Immunol. 1980 May;51(2):319–330. doi: 10.1016/0008-8749(80)90263-4. [DOI] [PubMed] [Google Scholar]
  5. Adler L. T., Adler F. L., Yamada A. Stable chimerism induced in noninbred rabbits by neonatal injection of spleen cells from alltoype-suppressed adult donors. II. Distribution of donor and recipient allotypes on blood lymphocytes, in serum immunoglobulins, and in specific antibodies. Transplantation. 1978 Dec;26(6):401–406. doi: 10.1097/00007890-197812000-00007. [DOI] [PubMed] [Google Scholar]
  6. Adler L. T. in vitro studies on allotype suppression. I. Release from allotype suppression by antibodies specific for the non-suppressed allotype. J Immunol. 1974 Oct;113(4):1107–1112. [PubMed] [Google Scholar]
  7. Alder L. T., Adler F. L. In vitro studies on allotype suppression. III. compounds of antiallyotype serum active in release from allotype suppression. J Exp Med. 1975 Aug 1;142(2):332–345. doi: 10.1084/jem.142.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Andersson U., Bird G., Britton S. Cellular mechanisms of restricted immunoglobulin formation in the human neonate. Eur J Immunol. 1980 Nov;10(11):888–894. doi: 10.1002/eji.1830101115. [DOI] [PubMed] [Google Scholar]
  9. Argyris B. F. Suppressor activity in the spleen of neonatal mice. Cell Immunol. 1978 Mar 15;36(2):354–362. doi: 10.1016/0008-8749(78)90279-4. [DOI] [PubMed] [Google Scholar]
  10. Avrameas S., Ternynck T. Biologically active water-insoluble protein polymers. I. Their use for isolation of antigens and antibodies. J Biol Chem. 1967 Apr 10;242(7):1651–1659. [PubMed] [Google Scholar]
  11. Bordenave G. R., Babinet C. Immunoglobulin allotypy of allophenic rabbits. Ann Immunol (Paris) 1979 Mar-Apr;130(2):181–197. [PubMed] [Google Scholar]
  12. Cohen C., Tissot R. G. The effect of the RL-A locus and the NLC locus on graft survival in the rabbit. Transplantation. 1974 Aug;18(2):150–154. doi: 10.1097/00007890-197408000-00008. [DOI] [PubMed] [Google Scholar]
  13. DRAY S. Effect of maternal isoantibodies on the quantitative expression of two allelic genes controlling gamma-globulin allotypic specificities. Nature. 1962 Aug 18;195:677–680. doi: 10.1038/195677a0. [DOI] [PubMed] [Google Scholar]
  14. Dubiski S., Good P. W. Autospecific and allospecific antibodies raised in allotype suppressed rabbits. Mol Immunol. 1979 Dec;16(12):989–996. doi: 10.1016/0161-5890(79)90032-4. [DOI] [PubMed] [Google Scholar]
  15. Elfenbein G. J., Harrison M. R., Mage R. G. Appearance of lymphocyte surface markers and functional responses in neonatal and young rabbit spleens. Cell Immunol. 1975 Feb;15(2):303–311. doi: 10.1016/0008-8749(75)90009-x. [DOI] [PubMed] [Google Scholar]
  16. Harrison M. R., Elfenbein G. J., Mage R. G. Defective activation of b5 bearing lymphocytes in rabbits recovering from b5 allotype suppression. Cell Immunol. 1974 Mar 30;11(1-3):231–238. doi: 10.1016/0008-8749(74)90023-9. [DOI] [PubMed] [Google Scholar]
  17. Harrison M. R., Mage R. G., Davie J. M. Deletion of b5 immunoglobulin-bearing lymphocytes in allotype-suppressed rabbits. J Exp Med. 1973 Feb 1;137(2):254–264. doi: 10.1084/jem.137.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herzenberg L. A., Herzenberg L. A. Short-term and chronic allotype suppression in mice. Contemp Top Immunobiol. 1974;3:41–75. doi: 10.1007/978-1-4684-3045-5_2. [DOI] [PubMed] [Google Scholar]
  19. Horng W. J., Gilman-Sachs A., Roux K. H., Mclinaro G. A., Dray S. Auto-antibody to an Ig VH region allotype: induction of anti-a1 antibody in an a1-suppressed a1a2 heterozygous rabbit. J Immunol. 1977 Nov;119(5):1560–1562. [PubMed] [Google Scholar]
  20. Ivanyi J., Makings C. W. Antagonism between donor and host B cells in allotype congenic chicken chimeras. Transplantation. 1978 Oct;26(4):221–227. doi: 10.1097/00007890-197810000-00004. [DOI] [PubMed] [Google Scholar]
  21. Kindt T. J. Rabbit immunoglobulin allotypes: structure, immunology, and genetics. Adv Immunol. 1975;21:35–86. doi: 10.1016/s0065-2776(08)60218-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klein J., Herzenberg L. A. Congenic mouse strains with different immunoglobulin allotypes. I. Breeding scheme, histocompatibility tests, and kinetics of gamma G2a-globulin production by transferred cells for C3H.SW and its congenic partner CWB/5. Transplantation. 1967 Nov;5(6):1484–1495. doi: 10.1097/00007890-196711000-00013. [DOI] [PubMed] [Google Scholar]
  23. Lowe J. A., Cross L. M., Catty D. Humoral and cellular aspects of immunologlobulin allotype suppression in the rabbit. III. Production of anti-allotypic antibody by suppressed animals. Immunology. 1975 Mar;28(3):469–478. [PMC free article] [PubMed] [Google Scholar]
  24. Mage R. G. Altered quantitative expression of immunoglobulin allotypes in rabbits. Curr Top Microbiol Immunol. 1974;63:131–152. doi: 10.1007/978-3-642-65775-7_4. [DOI] [PubMed] [Google Scholar]
  25. Morse H. C., 3rd, Prescott B., Cross S. S., Stashak P. W., Baker P. J. Regulation of the antibody response to type III pneumococcal polysaccharide. V. Ontogeny of factors influencing the magnitude of the plaque-forming cell response. J Immunol. 1976 Feb;116(2):279–287. [PubMed] [Google Scholar]
  26. Paige C. J., Kincade P. W., Moore M. A., Lee G. The fate of fetal and adult B-cell progenitors grafted into immunodeficient CBA/N mice. J Exp Med. 1979 Sep 19;150(3):548–563. doi: 10.1084/jem.150.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raff M. C., Owen J. J., Cooper M. D., Lawton A. R., 3rd, Megson M., Gathings W. E. Differences in susceptibility of mature and immature mouse B lymphocytes to anti-immunoglobulin-induced immunoglobulin suppression in vitro. Possible implications for B-cell tolerance to self. J Exp Med. 1975 Nov 1;142(5):1052–1064. doi: 10.1084/jem.142.5.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ratcliffe M. J., Ivanyi J. Allotype suppression in the chicken. I. Generation of chronic suppression in heterozygous but not in homozygous chickens. Eur J Immunol. 1979 Nov;9(11):847–852. doi: 10.1002/eji.1830091104. [DOI] [PubMed] [Google Scholar]
  29. Sidman C. L., Unanue E. R. Receptor-mediated inactivation of early B lymphocytes. Nature. 1975 Sep 11;257(5522):149–151. doi: 10.1038/257149a0. [DOI] [PubMed] [Google Scholar]
  30. Simons M. A., Hayward A. R., Gathings W. E., Lawton A. R., Young-Cooper G. O., Cooper M. D., Mage R. G. Expression of b 4 and b 5 chi light chain allotypes by B and pre-B cells in allotype-suppressed and neutralized b4b5 rabbits. Eur J Immunol. 1979 Nov;9(11):887–891. doi: 10.1002/eji.1830091110. [DOI] [PubMed] [Google Scholar]
  31. Stephens T. J., McIvor J. L., Warner C. M. Chimeric drift in allophenic mice. Analysis of changes in red blood cell and white blood cell populations in C57BL/6 in equilibrium A mice. Cell Immunol. 1977 Oct;33(2):412–422. doi: 10.1016/0008-8749(77)90169-1. [DOI] [PubMed] [Google Scholar]
  32. Tissot R. G., Cohen C. Histocompatibility in the rabbit. Linkage between RL-A, MLC, and the He blood group loci. Transplantation. 1974 Aug;18(2):142–149. [PubMed] [Google Scholar]
  33. Volf D., Sensenbrenner L. L., Sharkis S. J., Elfenbein G. J., Scher I. Induction of partial chimerism in nonirradiated B-lymphocyte-deficient CBA/N mice. J Exp Med. 1978 Mar 1;147(3):940–945. doi: 10.1084/jem.147.3.940. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES