Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Nov 1;154(5):1636–1651. doi: 10.1084/jem.154.5.1636

Cytomegalovirus causes a latent infection in undifferentiated cells and is activated by induction of cell differentiation

FJ Dutko, MBA Oldstone
PMCID: PMC2186521  PMID: 6271894

Abstract

Murine cytomegalovirus (MCMV) does not productively infect OTT6050AF1 BrdU, F9, or PCC4 undifferentiated murine teratocarcinoma cell lines, as shown by immunofluorescence assays for viral antigens and by plaque assays for infectious virus. However, these cells were infected by a variety of other viruses. MCMV does productively infect PYS2 and OTT F12 differentiated murine teratocarcinoma cell lines. The replication of MCMV in the pluripotent PCC4 cell line was examined in detail. Undifferentiated PCC4 cells could be differentiated when propagated in the presence of dimethylacetamide, as judged by changes in the expression of H-2 antigens on the cell surface. Several viruses, including lymphocytic choriomeningitis virus, herpes simplex virus type 1, and vesicular stomatitis virus, replicated to a similar extent in differentiated and undifferentiated PCC4 cells. MCMV did productively infect differentiated PCC4 cells. In contrast, MCMV did not produce infectious virus, viral antigens, or substantial viral RNA in undifferentiated PCC4 cells. The molecular block of MCMV replication occurred at the level of MCMV RNA transcription. Undifferentiated PCC4 cells have receptors for MCMV and bind similar amounts of radiolabeled virus as differentiated PCC4 cells. After MCMV binds to its receptors on undifferentiated cells, MCMV penetrates the plasma membrane and is transported to the cells' nuclei. MCMV DNA was present in the cytoplasm, and small amounts of MCMV RNA (less than 17 percent of that found in MCMV-infected differentiated PCC4 cells) were found in the nucleus. However, MCMV RNA was not detected in the cytoplasm of undifferentiated cells. A latent infection was established by infecting undifferentiated PCC4 cells with MCMV, inactivating residual infectivity with antibodies to MCMV, and propagating cells under conditions that maintained the undifferentiated state. These MCMV-infected undifferentiated cells did not produce infectious virus, viral antigens, or viral RNA but did contain viral DNA detectable by DNA-DNA hybridization kinetics. Latency was terminated and infectious virus was made when such undifferentiated cells were induced to differentiate.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht P., Torrey E. F., Boone E., Hicks J. T., Daniel N. Raised cytomegalovirus-antibody level in cerebrospinal fluid of schizophrenic patients. Lancet. 1980 Oct 11;2(8198):769–772. doi: 10.1016/s0140-6736(80)90386-4. [DOI] [PubMed] [Google Scholar]
  2. Artzt K., Jacob F. Letter: Absence of serologically detectable H-2 on primitive teratocarcinoma cells in culture. Transplantation. 1974 Jun;17(6):632–634. doi: 10.1097/00007890-197406000-00015. [DOI] [PubMed] [Google Scholar]
  3. Berstine E. G., Hooper M. L., Grandchamp S., Ephrussi B. Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3899–3903. doi: 10.1073/pnas.70.12.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boccara M., Kelly F. Expression of polyoma virus in heterokaryons between embryonal carcinoma cells and differentiated cells. Virology. 1978 Oct 1;90(1):147–150. doi: 10.1016/0042-6822(78)90342-2. [DOI] [PubMed] [Google Scholar]
  5. Brautigam A. R., Dutko F. J., Olding L. B., Oldstone M. B. Pathogenesis of murine cytomegalovirus infection: the macrophage as a permissive cell for cytomegalovirus infection, replication and latency. J Gen Virol. 1979 Aug;44(2):349–359. doi: 10.1099/0022-1317-44-2-349. [DOI] [PubMed] [Google Scholar]
  6. Buchmeier M. J., Elder J. H., Oldstone M. B. Protein structure of lymphocytic choriomeningitis virus: identification of the virus structural and cell associated polypeptides. Virology. 1978 Aug;89(1):133–145. doi: 10.1016/0042-6822(78)90047-8. [DOI] [PubMed] [Google Scholar]
  7. Casey J., Davidson N. Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res. 1977;4(5):1539–1552. doi: 10.1093/nar/4.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craighead J. E., Hanshaw J. B., Carpenter C. B. Cytomegalovirus infection after renal allotransplantation. JAMA. 1967 Sep 4;201(10):725–728. [PubMed] [Google Scholar]
  9. Dowling J. N., Saslow A. R., Armstrong J. A., Ho M. The relationship of immunosuppression to cytomegalovirus infection. Yale J Biol Med. 1976 Mar;49(1):77–82. [PMC free article] [PubMed] [Google Scholar]
  10. Dutko F. J., Oldstone M. B. Murine cytomegalovirus infects spermatogenic cells. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2988–2991. doi: 10.1073/pnas.76.6.2988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duvall C. P., Casazza A. R., Grimley P. M., Carbone P. P., Rowe W. P. Recovery of cytomegalovirus from adults with neoplastic disease. Ann Intern Med. 1966 Mar;64(3):531–541. doi: 10.7326/0003-4819-64-3-531. [DOI] [PubMed] [Google Scholar]
  12. Forman J., Vitetta E. S. Absence of H-2 antigens capable of reacting with cytotoxic T cells on a teratoma line expressing a T/t locus antigen. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3661–3665. doi: 10.1073/pnas.72.9.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujimura F. K., Deininger P. L., Friedmann T., Linney E. Mutation near the polyoma DNA replication origin permits productive infection of F9 embryonal carcinoma cells. Cell. 1981 Mar;23(3):809–814. doi: 10.1016/0092-8674(81)90445-1. [DOI] [PubMed] [Google Scholar]
  14. Gautsch J. W. Embryonal carcinoma stem cells lack a function required for virus replication. Nature. 1980 May 8;285(5760):110–112. doi: 10.1038/285110a0. [DOI] [PubMed] [Google Scholar]
  15. Haspel M. V., Pellegrino M. A., Lampert P. W., Oldstone M. B. Human histocompatibility determinants and virus antigens: effect of measles virus infection on HLA expression. J Exp Med. 1977 Jul 1;146(1):146–156. doi: 10.1084/jem.146.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huebner K., Tsuchida N., Green C., Croce C. M. A murine teratocarcinoma stem cell line carries suppressed oncogenic virus genomes. J Exp Med. 1979 Aug 1;150(2):392–405. doi: 10.1084/jem.150.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jakob H., Boon T., Gaillard J., Nicolas J., Jacob F. Tératocarcinome de la spuris: isolement, culture et propriétés de cellules a potentialités multiples. Ann Microbiol (Paris) 1973 Oct;124(3):269–282. [PubMed] [Google Scholar]
  18. Jordan M. C., Shanley J. D., Stevens J. G. Immunosuppression reactivates and disseminates latent murine cytomegalovirus. J Gen Virol. 1977 Nov;37(2):419–423. doi: 10.1099/0022-1317-37-2-419. [DOI] [PubMed] [Google Scholar]
  19. Kohne D. E., Levison S. A., Byers M. J. Room temperature method for increasing the rate of DNA reassociation by many thousandfold: the phenol emulsion reassociation technique. Biochemistry. 1977 Nov 29;16(24):5329–5341. doi: 10.1021/bi00643a026. [DOI] [PubMed] [Google Scholar]
  20. Meinkoth J., Kennedy S. I. Semliki forest virus persistence in mouse L929 cells. Virology. 1980 Jan 15;100(1):141–155. doi: 10.1016/0042-6822(80)90560-7. [DOI] [PubMed] [Google Scholar]
  21. Miller R. A., Ward D. C., Ruddle F. H. Embryonal carcinoma cells (and their somatic cell hybrids) are resistant to infection by the murine parvovirus MVM, which does infect other teratocarcinoma-derived cell lines. J Cell Physiol. 1977 Jun;91(3):393–401. doi: 10.1002/jcp.1040910309. [DOI] [PubMed] [Google Scholar]
  22. Myers J. D., Spencer H. C., Jr, Watts J. C., Gregg M. B., Stewart J. A., Troupin R. H., Thomas E. D. Cytomegalovirus pneumonia after human marrow transplantation. Ann Intern Med. 1975 Feb;82(2):181–188. doi: 10.7326/0003-4819-82-2-181. [DOI] [PubMed] [Google Scholar]
  23. Neighbour P. A. Studies on the susceptibility of the mouse preimplantation embryo to infection with cytomegalovirus. J Reprod Fertil. 1978 Sep;54(1):15–20. doi: 10.1530/jrf.0.0540015. [DOI] [PubMed] [Google Scholar]
  24. Neiman P. E., Reeves W., Ray G., Flournoy N., Lerner K. G., Sale G. E., Thomas E. D. A prospective analysis interstitial pneumonia and opportunistic viral infection among recipients of allogeneic bone marrow grafts. J Infect Dis. 1977 Dec;136(6):754–767. doi: 10.1093/infdis/136.6.754. [DOI] [PubMed] [Google Scholar]
  25. Neiman P., Wasserman P. B., Wentworth B. B., Kao G. F., Lerner K. G., Storb R., Buckner C. D., Clift R. A., Fefer A., Fass L. Interstitial pneumonia and cytomegalovirus infection as complications of human marrow transplantation. Transplantation. 1973 May;15(5):478–485. [PubMed] [Google Scholar]
  26. Olding L. B., Jensen F. C., Oldstone M. B. Pathogenesis of of cytomegalovirus infection. I. Activation of virus from bone marrow-derived lymphocytes by in vitro allogenic reaction. J Exp Med. 1975 Mar 1;141(3):561–572. doi: 10.1084/jem.141.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olding L. B., Kingsbury D. T., Oldstone M. B. Pathogenesis of cytomegalovirus infection. Distribution of viral products, immune complexes and autoimmunity during latent murine infection. J Gen Virol. 1976 Nov;33(2):267–280. doi: 10.1099/0022-1317-33-2-267. [DOI] [PubMed] [Google Scholar]
  28. Oldstone M. B., Dixon F. J. Pathogenesis of chronic disease associated with persistent lymphocytic choriomeningitis viral infection. I. Relationship of antibody production to disease in neonatally infected mice. J Exp Med. 1969 Mar 1;129(3):483–505. doi: 10.1084/jem.129.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oldstone M. B., Tishon A., Dutko F. J., Kennedy S. I., Holland J. J., Lampert P. W. Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus? J Virol. 1980 Apr;34(1):256–265. doi: 10.1128/jvi.34.1.256-265.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Puga A., Rosenthal J. D., Openshaw H., Notkins A. L. Herpes simplex virus DNA and mRNA sequences in acutely and chronically infected trigeminal ganglia of mice. Virology. 1978 Aug;89(1):102–111. doi: 10.1016/0042-6822(78)90044-2. [DOI] [PubMed] [Google Scholar]
  31. Reynolds D. W., Stagno S., Hosty T. S., Tiller M., Alford C. A., Jr Maternal cytomegalovirus excretion and perinatal infection. N Engl J Med. 1973 Jul 5;289(1):1–5. doi: 10.1056/NEJM197307052890101. [DOI] [PubMed] [Google Scholar]
  32. Reynolds D. W., Stagno S., Stubbs K. G., Dahle A. J., Livingston M. M., Saxon S. S., Alford C. A. Inapparent congenital cytomegalovirus infection with elevated cord IgM levels. Casual relation with auditory and mental deficiency. N Engl J Med. 1974 Feb 7;290(6):291–296. doi: 10.1056/NEJM197402072900601. [DOI] [PubMed] [Google Scholar]
  33. Segal S., Khoury G. Differentiation as a requirement for simian virus 40 gene expression in F-9 embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5611–5615. doi: 10.1073/pnas.76.11.5611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Segal S., Levine A. J., Khoury G. Evidence for non-spliced SV40 RNA in undifferentiated murine teratocarcinoma stem cells. Nature. 1979 Jul 26;280(5720):335–338. doi: 10.1038/280335a0. [DOI] [PubMed] [Google Scholar]
  35. Speers W. C., Birdwell C. R., Dixon F. J. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro. Am J Pathol. 1979 Dec;97(3):563–584. [PMC free article] [PubMed] [Google Scholar]
  36. Stern H. Isolation of cytomegalovirus and clinical manifestations of infection at different ages. Br Med J. 1968 Mar 16;1(5593):665–669. doi: 10.1136/bmj.1.5593.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  38. Swartzendruber D. E., Friedrich T. D., Lehman J. M. Resistance of teratocarcinoma stem cells to infection with simian virus 40: early events. J Cell Physiol. 1977 Oct;93(1):25–30. doi: 10.1002/jcp.1040930105. [DOI] [PubMed] [Google Scholar]
  39. Swartzendruber D. E., Lehman J. M. Neoplastic differentiation: interaction of simian virus 40 and polyoma virus with murine teratocarcinoma cells in vitro. J Cell Physiol. 1975 Apr;85(2 Pt 1):179–187. doi: 10.1002/jcp.1040850204. [DOI] [PubMed] [Google Scholar]
  40. Teich N. M., Weiss R. A., Martin G. R., Lowy D. R. Virus infection of murine teratocarcinoma stem cell lines. Cell. 1977 Dec;12(4):973–982. doi: 10.1016/0092-8674(77)90162-3. [DOI] [PubMed] [Google Scholar]
  41. Vasseur M., Kress C., Montreau N., Blangy D. Isolation and characterization of polyoma virus mutants able to develop in embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1068–1072. doi: 10.1073/pnas.77.2.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vogelstein B., Gillespie D. RNA-DNA hybridization in solution without DNA reannealing. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1127–1132. doi: 10.1016/0006-291x(77)91500-5. [DOI] [PubMed] [Google Scholar]
  43. WELLER T. H., HANSHAW J. B. Virologic and clinical observations on cytomegalic inclusion disease. N Engl J Med. 1962 Jun 14;266:1233–1244. doi: 10.1056/NEJM196206142662401. [DOI] [PubMed] [Google Scholar]
  44. Weller T. H. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. I. N Engl J Med. 1971 Jul 22;285(4):203–214. doi: 10.1056/NEJM197107222850406. [DOI] [PubMed] [Google Scholar]
  45. Weller T. H. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. II. N Engl J Med. 1971 Jul 29;285(5):267–274. doi: 10.1056/NEJM197107292850507. [DOI] [PubMed] [Google Scholar]
  46. Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]
  47. Zinkernagel R. M., Oldstone M. B. Cells that express viral antigens but lack H-2 determinants are not lysed by immune thymus-derived lymphocytes but are lysed by other antiviral immune attack mechanisms. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3666–3670. doi: 10.1073/pnas.73.10.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES