Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Dec 1;154(6):1811–1826. doi: 10.1084/jem.154.6.1811

Antigen receptors on murine T lymphocytes in contact sensitivity. I. Functional inhibition of effector T cells by monovalent 2,4- dinitrophenol: implication for a two-receptor model

PMCID: PMC2186546  PMID: 6459397

Abstract

Experiments were done to investigate the nature of the antigen receptor on lymph node(LN) T cells from mice sensitized to 2,4- dinitrofluorobenzene (DNFB). LN cells or purified T cells were treated in vitro with monovalent or different multivalent 2,4-dinitrophenol (DNP) ligands. The effect of this treatment was measured by testing the ability of the cells to transfer contact sensitivity (CS) to DNFB into naive recipients. We found that treatment of the T cells in vitro with either epsilon-DNP-L-lysine or DNP-protein conjugates inhibits the transfer of CS in a dose-dependent way. The inhibition is hapten specific and is not mediated by activation of suppressor cells. Inhibition of the T cells by hapten in vitro is rapid (15-30 min) and temperature independent but requires divalent cations in the treatment medium. In addition, it was found that hapten-treated T cells are unable to adsorb specific anti-idiotype antibody, and this inhibition of adsorption is hapten specific. Collectively, these data indicate that DNFB-immune T cells express a receptor specific for the hapten DNP and provide evidence that supports a two-receptor model for T cell recognition of antigen.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Sasson S. Z., Lipscomb M. F., Tucker T. F., Uhr J. W. Specific binding of T lymphocytes to macrophages. II. Role of macrophage-associated antigen. J Immunol. 1977 Oct;119(4):1493–1500. [PubMed] [Google Scholar]
  2. Brownstone A., Mitchison N. A., Pitt-Rivers R. Chemical and serological studies with an iodine-containing synthetic immunological determinant 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP) and related compounds. Immunology. 1966 May;10(5):465–479. [PMC free article] [PubMed] [Google Scholar]
  3. Dennert G. Thymus derived killer cells: specificity of function, and antigen recognition. Transplant Rev. 1976;29:59–88. doi: 10.1111/j.1600-065x.1976.tb00197.x. [DOI] [PubMed] [Google Scholar]
  4. Erb P., Feldmann M. The role of macrophages in the generation of T-helper cells. II. The genetic control of the macrophage-T-cell interaction for helper cell induction with soluble antigens. J Exp Med. 1975 Aug 1;142(2):460–472. doi: 10.1084/jem.142.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frankel M. E., Liberti P. A. Characterization of a calcium dependent immune response to human serum albumin. J Immunol. 1980 Jul;125(1):18–23. [PubMed] [Google Scholar]
  6. Hämmerling G. J., McDevitt H. O. Antigen binding T and B lymphocytes. I. Differences in cellular specificity and influence of metabolic activity on interaction of antigen with T and B cells. J Immunol. 1974 May;112(5):1726–1733. [PubMed] [Google Scholar]
  7. Inbar D., Hale A. H., Igras V., Eisen H. N. Soluble trinitrophenylated proteins and trinitrophenylated cells as specific inhibitors of target cell lysis by cytotoxic T lymphocytes. Cell Immunol. 1979 Feb;42(2):298–307. doi: 10.1016/0008-8749(79)90195-3. [DOI] [PubMed] [Google Scholar]
  8. Janeway C. A., Jr, Jason J. M. How T lymphocytes recognize antigen. Crit Rev Immunol. 1980 May;1(2):133–164. [PubMed] [Google Scholar]
  9. Janeway C. A., Wigzell H., Binz H. Two different VH gene products make up the T-cell receptors. Scand J Immunol. 1976;5(9):993–1001. doi: 10.1111/j.1365-3083.1976.tb03051.x. [DOI] [PubMed] [Google Scholar]
  10. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  11. Kantor F. S. Delayed hypersensitivity. I. Effect of in vitro exposure of cells to antigen upon leukocytic transfer of delayed hypersensitivity. J Exp Med. 1968 Feb 1;127(2):251–261. doi: 10.1084/jem.127.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz D. H., Benacerraf B. The function and interrelationships of T-cell receptors, Ir genes and other histocompatibility gene products. Transplant Rev. 1975;22:175–195. doi: 10.1111/j.1600-065x.1975.tb01559.x. [DOI] [PubMed] [Google Scholar]
  13. Krammer P. H. Alloantigen receptors on activated T cells in mice. I. Binding of alloantigens and anti-idiotypic antibodies to the same receptors. J Exp Med. 1978 Jan 1;147(1):25–36. doi: 10.1084/jem.147.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leskowitz S., Jones V. E. Immunochemical study of antigenic specificity in delayed hypersensitivity. 3. Suppression of hapten-specific delayed hypersensitivity by conjugates of varying size. J Immunol. 1965 Aug;95(2):331–335. [PubMed] [Google Scholar]
  15. Lipscomb M. F., Ben-Sasson S. Z., Tucker T. F., Uhr J. W. Specific binding of T lymphocytes to macrophages IV. Dependence on cations, temperature and cytochalasin B-sensitive mechanisms. Eur J Immunol. 1979 Feb;9(2):119–125. doi: 10.1002/eji.1830090205. [DOI] [PubMed] [Google Scholar]
  16. Lipscomb M. F., Ben-Sasson S. Z., Uhr J. W. Specific binding of T lymphocytes to macrophages. I. Kinetics of binding. J Immunol. 1977 May;118(5):1748–1754. [PubMed] [Google Scholar]
  17. Miller J. F. Influence of the major histocompatibility complex on T-cell activation. Adv Cancer Res. 1979;29:1–44. doi: 10.1016/s0065-230x(08)60845-3. [DOI] [PubMed] [Google Scholar]
  18. Miller J. F., Vadas M. A., Whitelaw A., Gamble J. H-2 gene complex restricts transfer of delayed-type hypersensitivity in mice. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5095–5098. doi: 10.1073/pnas.72.12.5095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moorhead J. W. Tolerance and contact sensitivity to DNFA in mice. VIII. Identification of distinct T cell subpopulations that mediate in vivo and in vitro manifestations of delayed hypersensitivity. J Immunol. 1978 Jan;120(1):137–144. [PubMed] [Google Scholar]
  20. Paul W. E., Benacerraf B. Functional specificity of thymus- dependent lymphocytes. Science. 1977 Mar 25;195(4284):1293–1300. doi: 10.1126/science.320663. [DOI] [PubMed] [Google Scholar]
  21. Paul W. E. Functional specificity of antigen-binding receptors of lymphocytes. Transplant Rev. 1970;5:130–166. doi: 10.1111/j.1600-065x.1970.tb00359.x. [DOI] [PubMed] [Google Scholar]
  22. Plaut M., Bubbers J. E., Henney C. S. Studies of the mechanism of lymphocyte-mediated cytolysis. VII. Two stages in the T cell-mediated lytic cycle with distinct cation requirements. J Immunol. 1976 Jan;116(1):150–155. [PubMed] [Google Scholar]
  23. Polak L., Rydén A., Roelants G. E. Antigen-binding T and B lymphocytes in sensitization and unresponsiveness to dinitrochlorobenzene (DNCB) contact sensitivity. Immunology. 1975 Mar;28(3):479–484. [PMC free article] [PubMed] [Google Scholar]
  24. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  25. Snell G. D. T cells, T cells recognition structures, and the major histocompatibility complex. Immunol Rev. 1978;38:3–69. doi: 10.1111/j.1600-065x.1978.tb00384.x. [DOI] [PubMed] [Google Scholar]
  26. Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sy M. S., Moorhead J. W., Claman H. N. Regulation of cell mediated immunity by antibodies: possible role of anti-receptor antibodies in the regulation of contact sensitivity to DNFB in mice. J Immunol. 1979 Dec;123(6):2593–2598. [PubMed] [Google Scholar]
  28. Werdelin O., Braendstrup O., Pedersen E. Macrophage-lymphocyte clusters in the immune response to soluble protein antigen in vitro. J Exp Med. 1974 Nov 1;140(5):1245–1259. doi: 10.1084/jem.140.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Werdelin O., Shevach E. M. Role of nominal antigen and Ia antigen in the binding of antigen-specific T lymphocytes to macrophages. J Immunol. 1979 Dec;123(6):2779–2784. [PubMed] [Google Scholar]
  30. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  33. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES