Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1981 Dec 1;154(6):1717–1731. doi: 10.1084/jem.154.6.1717

Recognition of polymorphic H-2 domains by T lymphocytes. I. Functional role of different H-2 domains for the generation of alloreactive cytotoxic T lymphocytes and determination of precursor frequencies

PMCID: PMC2186552  PMID: 6976406

Abstract

In the present communication, the repertoire of alloreactive cytotoxic T lymphocytes (CTL) clones was quantitatively investigated by limiting dilution analysis and by target inhibition with a panel of monoclonal antibodies (mAb). These mAb have previously been shown to define two distinct alloantigenic domains, A and B, on the H-2Kk molecule. The Poisson distribution analysis of H-2Kk-specific CTL clones generated in a limiting dilution system revealed three CTL populations with different precursor frequencies. The high frequent population is suppressed by an unknown suppressive mechanism that allows less frequent CTL populations to become visible. Target inhibition studies with a panel of Kk-specific mAb showed that these CTL populations differ not only in their precursor frequency but also in their specificity for different H-2 epitopes on the Kk molecule. Thus clones of the high frequency population are almost exclusively specific for determinants within domain A. In contrast, the low frequency population displays predominant specificity for determinants of domain B, while the population with medium frequency is blocked equally well by mAb against either domains A or B. Each mAb blocked only a fraction of clones indicating that each CTL subpopulation may consist of a large number of clonotypes with specificity for different H-2 epitopes. The data suggest that CTL recognize basically the same polymorphic domains on the H-2Kk molecule defined by antibodies, and they show that regulatory mechanisms determine the expressed repertoire in CTL populations.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter B. J., Schendel D. J., Bach M. L., Bach F. H., Klein J., Stimpfling J. H. Cell-mediated lympholysis. Importance of serologically defined H-2 regions. J Exp Med. 1973 May 1;137(5):1303–1309. doi: 10.1084/jem.137.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. J., Langman R. E., Cohn M. H-2 antigen-specific cytotoxic T cells induced by concanavalin A: estimation of their relative frequency. Eur J Immunol. 1976 Mar;6(3):150–156. doi: 10.1002/eji.1830060303. [DOI] [PubMed] [Google Scholar]
  3. Epstein S. L., Ozato K., Sachs D. H. Blocking of allogeneic cell-mediated lympholysis by monoclonal antibodies to H-2 antigens. J Immunol. 1980 Jul;125(1):129–135. [PubMed] [Google Scholar]
  4. Fitch F. W., Engers H. D., Cerottini J. C., Bruner K. T. Generation of cytotoxic T lymphocytes in vitro. VII. Suppressive effect of irradiated MLC cells on CTL response. J Immunol. 1976 Mar;116(3):716–723. [PubMed] [Google Scholar]
  5. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  6. Goronzy J., Schaefer U., Eichmann K., Simon M. M. Quantitative studies on T cell diversity. II. Determination of the frequencies and Lyt phenotypes of two types of precursor cells for alloreactive cytotoxic T cells in polyclonally and specifically activated splenic T cells. J Exp Med. 1981 Apr 1;153(4):857–870. doi: 10.1084/jem.153.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirano T., Nordin A. A. Cell-mediated immune response in vitro. I. The development of suppressor cells and cytotoxic lymphocytes in mixed lymphocyte cultures. J Immunol. 1976 Apr;116(4):1115–1122. [PubMed] [Google Scholar]
  8. Hodes R. J., Nadler L. M., Hathcock K. S. Regulatory mechanisms in cell-mediated immune responses. III. Antigen-specific and nonspecific suppressor activities generated during MLC. J Immunol. 1977 Sep;119(3):961–967. [PubMed] [Google Scholar]
  9. Lemke H., Hämmerling G. J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol Rev. 1979;47:175–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  10. Liberti P. A., Hackett C. J., Askonas B. A. Influenza virus infection of mouse lymphoblasts alters the binding affinity of anti-H-2 antibody: requirement for viral neuraminidase. Eur J Immunol. 1979 Oct;9(10):751–757. doi: 10.1002/eji.1830091003. [DOI] [PubMed] [Google Scholar]
  11. Lindahl K. F., Lemke H. Inhibition of killer-target cell interaction by monoclonal anti-H-2 antibodies. Eur J Immunol. 1979 Jul;9(7):526–536. doi: 10.1002/eji.1830090708. [DOI] [PubMed] [Google Scholar]
  12. MacDonald H. R., Cerottini J. C., Ryser J. E., Maryanski J. L., Taswell C., Widmer M. B., Brunner K. T. Quantitation and cloning of cytolytic T lymphocytes and their precursors. Immunol Rev. 1980;51:93–123. doi: 10.1111/j.1600-065x.1980.tb00318.x. [DOI] [PubMed] [Google Scholar]
  13. Nabholz M., Vives J., Young H. M., Meo T., Miggiano V., Rijnbeek A., Shreffler D. C. Cell-mediated cell lysis in vitro: genetic control of killer cell production and target specificities in the mouse. Eur J Immunol. 1974 May;4(5):378–387. doi: 10.1002/eji.1830040514. [DOI] [PubMed] [Google Scholar]
  14. Orosz C. G., Bach F. H. Alloantigen-activated CML suppression independent of cytotoxic activity. J Immunol. 1979 Sep;123(3):1419–1421. [PubMed] [Google Scholar]
  15. Paetkau V., Mills G., Gerhart S., Monticone V. Proliferation of murine thymic lymphocytes in vitro is mediated by the concanavalin A-induced release of a lymphokine (costimulator). J Immunol. 1976 Oct;117(4):1320–1324. [PubMed] [Google Scholar]
  16. Ploegh H. L., Orr H. T., Strominger J. L. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell. 1981 May;24(2):287–299. doi: 10.1016/0092-8674(81)90318-4. [DOI] [PubMed] [Google Scholar]
  17. Sherman L. A. Dissection of the B10.D2 anti-H-2Kb cytolytic T lymphocyte receptor repertoire. J Exp Med. 1980 Jun 1;151(6):1386–1397. doi: 10.1084/jem.151.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Skinner M. A., Marbrook J. An estimation of the frequency of precursor cells which generate cytotoxic lymphocytes. J Exp Med. 1976 Jun 1;143(6):1562–1567. doi: 10.1084/jem.143.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Teh H. S., Harley E., Phillips R. A., Miller R. G. Quantitative studies on the precursors of cytotoxic lymphocytes. I. Characterization of a clonal assay and determination of the size of clones derived from single precursors. J Immunol. 1977 Mar;118(3):1049–1056. [PubMed] [Google Scholar]
  20. Weyand C., Hämmerling G. J., Goronzy J. Recognition of H-2 domains by cytotoxic T lymphocytes. Nature. 1981 Aug 13;292(5824):627–629. doi: 10.1038/292627a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES