Abstract
The alkylating agent cyclophosphamide may suppress or enhance immune responses in vivo but is inactive in vitro unless metabolized by microsomal enzyme activation. 4-hydroperoxycyclophosphamide (4-HC) is a synthetic compound that is spontaneously converted in aqueous solution to the active metabolites. In this report, we examined the in vitro sensitivity of functional human T cell subsets to 4-HC in a polyclonal B cell differentiation assay and in the generation of mitogen-induced suppressor cells for effector B cell function. Con A-induced T suppression of B cell differentiation is completely abrogated by a 1-h pretreatment of T cells at very low concentrations of between 10(-2) and 20 nmol/ml, whereas inducer T cell function is sensitive only to concentrations in greater than 40 nmol/ml. The effects of 4-HC on suppressor T cells appear to occur at concentrations that do not result in DNA cross-linking or decreased blastogenesis. Con A-induced T suppressors are generated from within the OKT4+, OKT8- subset and are sensitive to low-dose 4-HC only before activation, whereas differentiated suppressor cells are resistant to concentrations in greater than 80 nmol/ml. Low-dose 4-HC pretreatment of the B cell population results in abrogation of immunoglobulin secretion when treated B cells are cocultured with unfractionated T cells, however, this effect is completely reversible if pretreated B cells are cocultured with T cells devoid of suppressor activity. These results demonstrate that human presuppressor cells for B-effector function differentiate in response to Con A from the OKT4+, OKT8- subset and are exquisitely sensitive to low concentrations of CYP whereas mature suppressor and inducer functions are resistant to all but very high concentrations in vitro. The differential sensitivity of functional T and B cell subsets to 4-HC in vitro can be a very useful probe in dissecting immunoregulatory interactions with man.
Full Text
The Full Text of this article is available as a PDF (949.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askenase P. W., Hayden B. J., Gershon R. K. Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J Exp Med. 1975 Mar 1;141(3):697–702. doi: 10.1084/jem.141.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor H., Boyse E. A. Regulation of cellular and humoral immune responses by T-cell subclasses. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):23–32. doi: 10.1101/sqb.1977.041.01.006. [DOI] [PubMed] [Google Scholar]
- Cantor H., McVay-Boudreau L., Hugenberger J., Naidorf K., Shen F. W., Gershon R. K. Immunoregulatory circuits among T-cell sets. II. Physiologic role of feedback inhibition in vivo: absence in NZB mice. J Exp Med. 1978 Apr 1;147(4):1116–1125. doi: 10.1084/jem.147.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debré P., Waltenbaugh C., Dorf M. E., Benacerraf B. Genetic control of specific immune suppression. IV. Responsiveness to the random copolymer L-glutamic acid50-L-tyrosine50 induced in BALB/c mice by cyclophosphamide. J Exp Med. 1976 Jul 1;144(1):277–281. doi: 10.1084/jem.144.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamantstein T., Klos M., Hahn H., Kaufmann S. H. Direct in vitro evidence for different susceptibilities to 4-hydroperoxycyclophosphamide of antigen-primed T cells regulating humoral and cell-mediated immune responses to sheep erythrocytes: a possible explanation for the inverse action of cyclophosphamide on humoral and cell-mediated immune responses. J Immunol. 1981 May;126(5):1717–1719. [PubMed] [Google Scholar]
- Diamantstein T., Willinger E., Reiman J. T-suppressor cells sensitive to cyclophosphamide and to its in vitro active derivative 4-hydroperoxycyclophosphamide control the mitogenic response of murine splenic B cells to dextran sulfate. A direct proof for different sensitivities of lymphocyte subsets to cyclophosphamide. J Exp Med. 1979 Dec 1;150(6):1571–1576. doi: 10.1084/jem.150.6.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gailani S., Seon B. K., Nussbaum A., Henderson E. S., Pressman D. Radioimmunoassay for myeloma idiotype. J Natl Cancer Inst. 1977 Jun;58(6):1553–1555. doi: 10.1093/jnci/58.6.1553. [DOI] [PubMed] [Google Scholar]
- Gold E. R., Fudenberg H. H. Chromic chloride: a coupling reagent for passive hemagglutination reactions. J Immunol. 1967 Nov;99(5):859–866. [PubMed] [Google Scholar]
- Kaplan M. E., Clark C. An improved rosetting assay for detection of human T lymphocytes. J Immunol Methods. 1974 Jul;5(2):131–135. doi: 10.1016/0022-1759(74)90003-9. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H., Ahmed J. S., Chahin M., Hahn H. Peritoneal exudate T lymphocytes with specificity to sheep red blood cells. III. High dose of antigen induces suppressor T cells which influence the appearance in exudates of effector T cells for delayed-type hypersensitivity and helper T cells for humoral immune responses. Immunology. 1979 Nov;38(3):613–619. [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Hahn H., Diamantstein T. Relative susceptibilities of T cell subsets involved in delayed-type hypersensitivity to sheep red blood cells to the in vitro action of 4-hydroperoxycyclophosphamide. J Immunol. 1980 Sep;125(3):1104–1108. [PubMed] [Google Scholar]
- L'age-Stehr J., Diamanstein T. Induction of autoreactive T lymphocytes and their suppressor cells by cyclophosphamide. Nature. 1978 Feb 16;271(5646):663–665. doi: 10.1038/271663a0. [DOI] [PubMed] [Google Scholar]
- Ozer H., Han T., Henderson E. S., Nussbaum A., Sheedy D. Immunoregulatory T cell function in multiple myeloma. J Clin Invest. 1981 Mar;67(3):779–789. doi: 10.1172/JCI110095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozer H., Strelkauskas A. J., Callery R. T., Schlossman S. F. A rapid method for the isolation of human peripheral null lymphocytes. Cell Immunol. 1979 Jul;45(2):334–335. doi: 10.1016/0008-8749(79)90394-0. [DOI] [PubMed] [Google Scholar]
- Ramshaw I. A., Bretscher P. A., Parish C. R. Regulation of the immune response. I. Suppression of delayed-type hypersensitivity by T cells from mice expressing humoral immunity. Eur J Immunol. 1976 Oct;6(10):674–679. doi: 10.1002/eji.1830061003. [DOI] [PubMed] [Google Scholar]
- Ramshaw I. A., Bretscher P. A., Parish C. R. Regulation of the immune response. II. Repressor T cells in cyclophosphamide-induced tolerant mice. Eur J Immunol. 1977 Mar;7(3):180–185. doi: 10.1002/eji.1830070313. [DOI] [PubMed] [Google Scholar]
- Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with the human cytotoxic/suppressor T cell subset previously defined by a heteroantiserum termed TH2. J Immunol. 1980 Mar;124(3):1301–1307. [PubMed] [Google Scholar]
- Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. Further characterization of the human inducer T cell subset defined by monoclonal antibody. J Immunol. 1979 Dec;123(6):2894–2896. [PubMed] [Google Scholar]
- Reinherz E. L., Schlossman S. F. Con A-inducible suppression of MLC: evidence for mediation by the TH2 + T cell subset in man. J Immunol. 1979 Apr;122(4):1335–1341. [PubMed] [Google Scholar]
- Shand F. L., Howard J. G. Induction in vitro of reversible immunosuppression and inhibition of B cell receptor regeneration by defined metabolites of cyclophosphamide. Eur J Immunol. 1979 Jan;9(1):17–21. doi: 10.1002/eji.1830090105. [DOI] [PubMed] [Google Scholar]
- Shand F. L. The immunopharmacology of cyclophosphamide. Int J Immunopharmacol. 1979;1(3):165–171. doi: 10.1016/0192-0561(79)90038-9. [DOI] [PubMed] [Google Scholar]
- Thomas Y., Rogozinski L., Irigoyen O. H., Friedman S. M., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. IV. Induction of suppressor cells within the OKT4+ population. J Exp Med. 1981 Aug 1;154(2):459–467. doi: 10.1084/jem.154.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas Y., Sosman J., Irigoyen O., Friedman S. M., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. I. Collaborative T-T interactions in the immunoregulation of B cell differentiation. J Immunol. 1980 Dec;125(6):2402–2408. [PubMed] [Google Scholar]
- Thomas Y., Sosman J., Rogozinski L., Irigoyen O., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. III. Regulation of helper factor production by T cell subsets. J Immunol. 1981 May;126(5):1948–1951. [PubMed] [Google Scholar]
- Whisler R. L., Stobo J. D. Suppression of humoral and delayed hypersensitivity responses by distinct T cell subpopulations. J Immunol. 1978 Aug;121(2):539–542. [PubMed] [Google Scholar]