Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Jan 1;155(1):140–154. doi: 10.1084/jem.155.1.140

A specific biosynthetic marker for immature thymic lymphoblasts. Active synthesis of thymus-leukemia antigen restricted to proliferating cells

E Rothenberg
PMCID: PMC2186575  PMID: 6976411

Abstract

Large cortical thymocytes from C57BL/6-Tla(a) mice have been prepared rapidly and in high yield by a combination of centrifugal elutriation and differential binding to peanut agglutinin (PNA)-coated plates. The cells in these lymphoblast-rich fractions were clearly distinct from the majority of thymocytes, with up to 70 percent in the S or G(2) + M phases of the cell cycle and an average rate of [(35)S]methionine incorporation per cell up to 20 times higher than that of the majority population. The populations of cells resolved in this fractionation were characterized by monitoring their rates of synthesis of specific glycoproteins, thymus- leukemia antigen (TL) and the Lyt-2, Lyt-3 complex (Lyt-2/3), relative to their total protein synthesis. Cells that bound to PNA synthesized high levels of Lyt-2/3, consistent with their identification as cortical thymocytes. Those that failed to bind made little or no Lyt-2/3, as expected for medullary cells, The fraction of dividing lymphoblasts that bound to PNA was enriched in cortical thymocyte precursors, including all the large cells detectably active in synthesizing Lyt-2. It differed sharply from the small cortical cells, however, in the synthesis of TL. Although both populations displayed abundant surface TL, the TL glycoprotein was produced actively in fractions containing dividing cells but made at a drastically reduced rate by the nondividing majority of cortical thymocytes. Thus, TL seems to be made at a narrowly circumscribed stage of early thymocyte development that is correlated with rapid proliferation. In most of the descendants of such blast cells, the TL glycoprotein is presumably retained on the cell surface as long as no substantial membrane turnover takes place. Ongoing TL synthesis may therefore serve as a marker for a unique developmental state which terminates rapidly in normal differentiation but may be extended by agents that give rise to TL(+) thymic lymphomas.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beller D. I., Unanue E. R. Evidence that thymocytes require at least two distinct signals to proliferate. J Immunol. 1979 Dec;123(6):2890–2893. [PubMed] [Google Scholar]
  2. Beller D. I., Unanue E. R. Thymic maturation in vitro by a secretory product from macrophages. J Immunol. 1977 May;118(5):1780–1787. [PubMed] [Google Scholar]
  3. Betel I., Mathieson B. J., Sharrow S. O., Asofsky R. Distribution of Lyt phenotypes in thymocyte subpopulations as measured by flow microfluorometry: selective enrichment of Lyt 1+23- thymocytes. J Immunol. 1980 May;124(5):2209–2217. [PubMed] [Google Scholar]
  4. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  5. Bryant B. J. Renewal and fate in the mammalian thymus: mechanisms and inferences of thymocytokinetics. Eur J Immunol. 1972 Feb;2(1):38–45. doi: 10.1002/eji.1830020109. [DOI] [PubMed] [Google Scholar]
  6. Bödeker B. G., van Eijk R. V., Mühlradt P. F. Mitogenic effects of partially purified interleukin 2 on thymocyte subpopulations and spleen t cells of the mouse. Eur J Immunol. 1980 Sep;10(9):702–707. doi: 10.1002/eji.1830100909. [DOI] [PubMed] [Google Scholar]
  7. Cantor H., Boyse E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med. 1975 Jun 1;141(6):1376–1389. doi: 10.1084/jem.141.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cantor H., Boyse E. A. Lymphocytes as models for the study of mammalian cellular differentiation. Immunol Rev. 1977 Jan;33:105–124. doi: 10.1111/j.1600-065x.1977.tb00364.x. [DOI] [PubMed] [Google Scholar]
  9. Cantor H., Weissman I. Development and function of subpopulations of thymocytes and T lymphocytes. Prog Allergy. 1976;20:1–64. [PubMed] [Google Scholar]
  10. Cayre Y., de Sostoa A., Silverstone A. E. Isolation of a subset of thymocytes inducible for terminal transferase biosynthesis. J Immunol. 1981 Feb;126(2):553–556. [PubMed] [Google Scholar]
  11. Clark S. L., Jr Incorporation of sulfate by the mouse thymus: its relation to secretion by medullary epithelial cells and to thymic lymphopoiesis. J Exp Med. 1968 Nov 1;128(5):927–957. doi: 10.1084/jem.128.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crissman H. A., Tobey R. A. Cell-cycle analysis in 20 minutes. Science. 1974 Jun 21;184(4143):1297–1298. doi: 10.1126/science.184.4143.1297. [DOI] [PubMed] [Google Scholar]
  13. Di Sabato G., Moraes E. K., Altin M. Effect of thymocyte-stimulating factor-containing supernatants on the surface antigens of murine thymocytes. Cell Immunol. 1979 May;44(2):252–261. doi: 10.1016/0008-8749(79)90003-0. [DOI] [PubMed] [Google Scholar]
  14. Fathman C. G., Small M., Herzenberg L. A., Weissman I. L. Thymus cell maturation. II. Differentiation of three "mature" subclasses in vivo. Cell Immunol. 1975 Jan;15(1):109–128. doi: 10.1016/0008-8749(75)90169-0. [DOI] [PubMed] [Google Scholar]
  15. Fink P. J., Bevan M. J. H-2 antigens of the thymus determine lymphocyte specificity. J Exp Med. 1978 Sep 1;148(3):766–775. doi: 10.1084/jem.148.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hopper K., Shortman K. The differentiation of T-lymphocytes. III. The behaviour of subpopulations of mouse thymus cells in short-term cell culture. Cell Immunol. 1976 Dec;27(2):256–273. doi: 10.1016/0008-8749(76)90233-1. [DOI] [PubMed] [Google Scholar]
  17. Huber B., Cantor H., Shen F. W., Boyse E. A. Independent differentiative pathways of Ly1 and Ly23 subclasses of T cells. Experimental production of mice deprived of selected T-cell subclasses. J Exp Med. 1976 Oct 1;144(4):1128–1133. doi: 10.1084/jem.144.4.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kisielow P., Dráber P., Wysocka M. Identification of TL+ thymocytes with different Lyt phenotypes. Eur J Immunol. 1979 Dec;9(12):1023–1025. doi: 10.1002/eji.1830091220. [DOI] [PubMed] [Google Scholar]
  19. Konda S., Stockert E., Smith R. T. Immunologic properties of mouse thymus cells: membrane antigen patterns associated with various cell subpopulations. Cell Immunol. 1973 May;7(2):275–289. doi: 10.1016/0008-8749(73)90250-5. [DOI] [PubMed] [Google Scholar]
  20. Kraal G., Groeneveld P. H., Boden D., Kors N. T-cell differentiation in lethally irradiated and reconstituted mice: functional recovery of PNA-fractionated subpopulations. Cell Immunol. 1981 Jul 15;62(1):74–81. doi: 10.1016/0008-8749(81)90300-2. [DOI] [PubMed] [Google Scholar]
  21. Kruisbeek A. M., Astaldi G. C. Distinct effects of thymic epithelial culture supernatants on T cell properties of mouse thymocytes separated by the use of peanut agglutinin. J Immunol. 1979 Sep;123(3):984–991. [PubMed] [Google Scholar]
  22. Kruisbeek A. M., Kröse T. C., Zijlstra J. J. Increase in T cell mitogen responsiveness in rat thymocytes by thymic epithelial culture supernatant. Eur J Immunol. 1977 Jun;7(6):375–381. doi: 10.1002/eji.1830070610. [DOI] [PubMed] [Google Scholar]
  23. Kung P. C., Siverstone A. E., McCaffrey R. P., Baltimore D. Murine terminal deoxynucleotidyl transferase: cellular distribution and response to cortisone. J Exp Med. 1975 Apr 1;141(4):855–865. [PMC free article] [PubMed] [Google Scholar]
  24. Larsson E. L., Coutinho A. Mechanism of T cell activation. I. A screening of "step one" ligands. Eur J Immunol. 1980 Feb;10(2):93–99. doi: 10.1002/eji.1830100205. [DOI] [PubMed] [Google Scholar]
  25. Larsson E. L. Mechanism of T cell activation. II. Antigen- and lectin-dependent acquisition of responsiveness to TCGF is a nonmitogenic, active response of resting T cells. J Immunol. 1981 Apr;126(4):1323–1326. [PubMed] [Google Scholar]
  26. Ledbetter J. A., Seaman W. E., Tsu T. T., Herzenberg L. A. Lyt-2 and lyt-3 antigens are on two different polypeptide subunits linked by disulfide bonds. Relationship of subunits to T cell cytolytic activity. J Exp Med. 1981 Jun 1;153(6):1503–1516. doi: 10.1084/jem.153.6.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lemke H., Hämmerling G. J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol Rev. 1979;47:175–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  28. London J., Horton M. A. Peanut agglutinin. V. Thymocyte subpopulations in the mouse studied with peanut agglutinin and Ly-6.2 antiserum. J Immunol. 1980 Apr;124(4):1803–1807. [PubMed] [Google Scholar]
  29. Lotan R., Skutelsky E., Danon D., Sharon N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem. 1975 Nov 10;250(21):8518–8523. [PubMed] [Google Scholar]
  30. Mathieson B. J., Sharrow S. O., Campbell P. S., Asofsky R. An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry. Nature. 1979 Feb 8;277(5696):478–480. doi: 10.1038/277478a0. [DOI] [PubMed] [Google Scholar]
  31. Mathieson B. J., Sharrow S. O., Rosenberg Y., Hämmerling U. Lyt 1+23- cells appear in the thymus before Lyt 123+ cells. Nature. 1981 Jan 15;289(5794):179–181. doi: 10.1038/289179a0. [DOI] [PubMed] [Google Scholar]
  32. Meistrich M. L., Nell L. J., Richie E. S. Separation of AKR mouse thymus lymphoma from normal thymic cells by centrifugal elutriation. J Immunol Methods. 1981;41(3):289–301. doi: 10.1016/0022-1759(81)90192-7. [DOI] [PubMed] [Google Scholar]
  33. Metcalf D., Wiadrowski M. Autoradiographic analysis of lymphocyte proliferation in the thymus and in thymic lymphoma tissue. Cancer Res. 1966 Mar;26(3):483–491. [PubMed] [Google Scholar]
  34. Nakayama E., Shiku H., Stockert E., Oettgen H. F., Old L. J. Cytotoxic T cells: Lyt phenotype and blocking of killing activity by Lyt antisera. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1977–1981. doi: 10.1073/pnas.76.4.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reilly E. B., Auditore-Hargreaves K., Hämmerling U., Gottlieb P. D. Lyt-2 and Lyt-3 alloantigens: precipitation with monoclonal and conventional antibodies and analysis on one- and two-dimensional polyacrylamide gels. J Immunol. 1980 Nov;125(5):2245–2251. [PubMed] [Google Scholar]
  36. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976 Jul;25(1):129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  37. Roelants G. E., London J., Mayor-Withey K. S., Serrano B. Peanut agglutinin. II. Characterization of the Thy-1, Tla and Ig phenotype of peanut agglutinin-positive cells in adult, embryonic and nude mice using double immunofluorescence. Eur J Immunol. 1979 Feb;9(2):139–145. doi: 10.1002/eji.1830090209. [DOI] [PubMed] [Google Scholar]
  38. Rothenberg E., Boyse E. A. Synthesis and processing of molecules bearing thymus leukemia antigen. J Exp Med. 1979 Oct 1;150(4):777–791. doi: 10.1084/jem.150.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rothenberg E. Expression of differentiation antigens in subpopulations of mouse thymocytes: regulation at the level of de novo synthesis. Cell. 1980 May;20(1):1–9. doi: 10.1016/0092-8674(80)90228-7. [DOI] [PubMed] [Google Scholar]
  40. Rothenberg E., Triglia D. In vitro maintenance of differentiation marker synthesis by subpopulations of mouse thymocytes. J Supramol Struct. 1980;14(3):371–382. doi: 10.1002/jss.400140310. [DOI] [PubMed] [Google Scholar]
  41. Sanderson R. J., Bird K. E. Cell separations by counterflow centrifugation. Methods Cell Biol. 1977;15:1–14. doi: 10.1016/s0091-679x(08)60206-x. [DOI] [PubMed] [Google Scholar]
  42. Scollay R., Jacobs S., Jerabek L., Butcher E., Weissman I. T cell maturation: thymocyte and thymus migrant subpopulations defined with monoclonal antibodies to MHC region antigens. J Immunol. 1980 Jun;124(6):2845–2853. [PubMed] [Google Scholar]
  43. Scollay R., Weissman I. L. T cell maturation: thymocyte and thymus migrant subpopulations defined with monoclonal antibodies to the antigens Lyt-1, Lyt-2, and ThB1. J Immunol. 1980 Jun;124(6):2841–2844. [PubMed] [Google Scholar]
  44. Shaw J., Monticone V., Paetkau V. Partial purification and molecular characterization of a lymphokine (costimulator) required for the mitogenic response of mouse thymocytes in vitro. J Immunol. 1978 Jun;120(6):1967–1973. [PubMed] [Google Scholar]
  45. Shiku H., Kisielow P., Bean M. A., Takahashi T., Boyse E. A., Oettgen H. F., Old L. J. Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. J Exp Med. 1975 Jan 1;141(1):227–241. doi: 10.1084/jem.141.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shortman K., Jackson H. The differentiation of T lymphocytes. I. Proliferation kinetics and interrelationships of subpopulations of mouse thymus cells. Cell Immunol. 1974 May;12(2):230–246. doi: 10.1016/0008-8749(74)90075-6. [DOI] [PubMed] [Google Scholar]
  47. Shortman K., Von Boehmer H., Lipp J., Hopper K. Subpopulations of T-lymphocytes. Physical separation, functional specialisation and differentiation pathways of sub-sets of thymocytes and thymus-dependent peripheral lymphocytes. Transplant Rev. 1975;25:163–210. [PubMed] [Google Scholar]
  48. Swain S. L. Association of Ly phenotypes, T cell function and MHC recognition. Fed Proc. 1980 Nov;39(13):3110–3113. [PubMed] [Google Scholar]
  49. Triglia D., Rothenberg E. "Mature" thymocytes are not glucocorticoid-resistant in vitro. J Immunol. 1981 Jul;127(1):64–68. [PubMed] [Google Scholar]
  50. Wagner H., Hardt C., Bartlett R., Röllinghoff M., Pfizenmaier K. Intrathymic differentiation of cytotoxic T lymphocyte (CTL) precursors. I. The CTL immunocompetence of peanut agglutinin-positive (cortical) and negative (medullary) Lyt 123 thymocytes. J Immunol. 1980 Dec;125(6):2532–2538. [PubMed] [Google Scholar]
  51. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES