Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Feb 1;155(2):508–523. doi: 10.1084/jem.155.2.508

Immune response gene function correlates with the expression of an Ia antigen. II. A quantitative deficiency in A(e):E(a), complex expression causes a corresponding defect in antigen-presenting cell function

LA Matis, PP Jones, DB Murphy, SM Hedrick, EA Lerner, CA Janeway, JM McNicholas, RH Schwartz
PMCID: PMC2186585  PMID: 6173457

Abstract

A series of experiments were performed to explore the role of complementing major histocompatability complex (MHC)-linked immune response Ir genes in the murine T cell proliferative response to the globular protein antigen pigeon cytochrome c. The functional equivalence of I-E-subregion-encoded, structurally homologous E(a) chains from different haplotypes bearing the serologic specificity Ia.7 was demonstrated by the complementation for high responsiveness to pigeon cytochrome c of F(1) hybrids between low responder B 10.A(4R) (I-A (k)) or B 10.S (I-A(8)) mice and four low responder E(a)- bearing haplotypes. Moreover, this Ir gene function correlated directly with both the ability of antigen-pulsed spleen cells from these same F(1) strains to stimulate pigeon cytochrome c-primed T cells from B10.A or B10.S(9R) mice, and with the cell surface expression of the two-chain Ia antigenic complex, A(e):E(a), bearing the conformational or combinatorial determinant recognized by the monoclonal anti-Ia antibody, Y-17. The B 10.PL strain (H-2(u)), which expresses an Ia.7-positive I-E- subregion-encoded E(a) chain, failed to complement with B10.A(4R) or B10.S mice in the response to pigeon cytochrome c. However, (B10.A(4R) × B10.PL)F(1) and (B10.S × B10.PL)F(1) mice do express A(k)(e):E(u)(a) and A(8)(e):E(u)(a) on their cell surface, although in reduced amounts relative to A(k,s)(e):E(k,d,p,r)(a) complexes found in corresponding F(1) strains. This quantitative difference in Ia antigen expression correlated with a difference in the ability to present pigeon cytochrome c to B 10.A and B 10.S(9R) long-term T cell lines. Thus, (B10.A(4R) × B10.PL)F(1) spleen cells required a 10-fold higher antigen dose to induce the same stimulation as (B10.A(4R) × B10.D2)F(1) spleen cells. In addition, the monoclonal antibody, Y-17, which reacts with A(e):E(a) molecules of several strains, had a greater inhibitory effect on the proliferative response to pigeon cytochrome c of B10.A T cells in the presence of (B10.A(4R) X B10.PL)F(1) spleen cells than in the presence of (B10.A(4R) X B10.D2)F(1) spleen cells. These functional data, in concert with the biochemical and serological data in the accompanying report, are consistent with the molecular model for Ir gene complementation in which appropriate two-chain Ia molecules function at the antigen-presenting cell (APC) surface as restriction elements. Moreover, they clearly demonstrate that the magnitude of the T cell proliferative response is a function of both the concentration of nominal antigen and of the amount of Ia antigen expressed on the APC. Finally, the direct correlation of a quantitative deficiency in cell surface expression of an Ia antigen with a corresponding relative defect in antigen-presenting function provides strong independent evidence that the I-region-encoded Ia antigens are the products of the MHC-linked Ir genes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  2. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  3. Corradin G., Harbury H. A. Cleavage of cytochrome c with cyanogen bromide. Biochim Biophys Acta. 1970 Dec 22;221(3):489–496. doi: 10.1016/0005-2795(70)90219-9. [DOI] [PubMed] [Google Scholar]
  4. Erb P., Feldmann M., Hogg N. Role of macrophages in the generation of T helper cells. IV. Nature of genetically related factor derived from macrophages incubated with soluble antigens. Eur J Immunol. 1976 May;6(5):365–372. doi: 10.1002/eji.1830060512. [DOI] [PubMed] [Google Scholar]
  5. Janeway C. A., Wigzell H., Binz H. Two different VH gene products make up the T-cell receptors. Scand J Immunol. 1976;5(9):993–1001. doi: 10.1111/j.1365-3083.1976.tb03051.x. [DOI] [PubMed] [Google Scholar]
  6. Jones P. P., Murphy D. B., McDevitt H. O. Two-gene control of the expression of a murine Ia antigen. J Exp Med. 1978 Oct 1;148(4):925–939. doi: 10.1084/jem.148.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kimoto M., Fathman C. G. Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation. J Exp Med. 1980 Oct 1;152(4):759–770. doi: 10.1084/jem.152.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lerner E. A., Matis L. A., Janeway C. A., Jr, Jones P. P., Schwartz R. H., Murphy D. B. Monoclonal antibody against an Ir gene product? J Exp Med. 1980 Oct 1;152(4):1085–1101. doi: 10.1084/jem.152.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lonai P., Puri J., Hämmerling G. H-2-restricted antigen binding by a hybridoma clone that produces antigen-specific helper factor. Proc Natl Acad Sci U S A. 1981 Jan;78(1):549–553. doi: 10.1073/pnas.78.1.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Longo D. L., Schwartz R. H. Gene complementation. Neither Ir-GLphi gene need be present in the proliferative T cell to generate an immune response to Poly(Glu55Lys36Phe9)n. J Exp Med. 1980 Jun 1;151(6):1452–1467. doi: 10.1084/jem.151.6.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Longo D. L., Schwartz R. H. Inhibition of antigen-induced proliferation of T cells from radiation-induced bone marrow chimeras by a monoclonal antibody directed against an Ia determinant on the antigen-presenting cell. Proc Natl Acad Sci U S A. 1981 Jan;78(1):514–518. doi: 10.1073/pnas.78.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKean D. J., Melvold R. W., David C. Tryptic peptide comparison of Ia antigen alpha and beta polypeptides from the I-A mutant B6.C-H-2bm12 and its congenic parental strain B6. Immunogenetics. 1981;14(1-2):41–51. doi: 10.1007/BF00344298. [DOI] [PubMed] [Google Scholar]
  13. McKenzie I. F., Morgan G. M., Sandrin M. S., Michaelides M. M., Melvold R. W., Kohn H. I. B6.C-H-2bm12. A new H-2 mutation in the I region in the mouse. J Exp Med. 1979 Dec 1;150(6):1323–1338. doi: 10.1084/jem.150.6.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Michaelides M., Sandrin M., Morgan G., McKenzie I. F., Ashman R., Melvold R. W. Ir gene function in an I-A subregion mutant B6.C-H-2bm12. J Exp Med. 1981 Feb 1;153(2):464–469. doi: 10.1084/jem.153.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  16. Rosenwasser L. J., Huber B. T. The xid gene controls Ia.W39-associated immune response gene function. J Exp Med. 1981 May 1;153(5):1113–1123. doi: 10.1084/jem.153.5.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz R. H., Chen C., Paul W. E. Gene complementation in the T lymphocyte proliferative response to poly (Glu56Lys35Phe9)n. Functional evidence for a restriction element coded for by both the I-A and I-E subregions. Eur J Immunol. 1980 Sep;10(9):708–714. doi: 10.1002/eji.1830100910. [DOI] [PubMed] [Google Scholar]
  18. Schwartz R. H., Dorf M. E., Benacerraf B., Paul W. E. The requirement for two complementing Ir-GLphi immune response genes in the T-lymphocyte proliferative response to poly-(Glu53Lys36Phe11). J Exp Med. 1976 Apr 1;143(4):897–905. doi: 10.1084/jem.143.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz R. H., Paul W. E. T-lymphocyte-enriched murine peritoneal exudate cells. II. Genetic control of antigen-induced T-lymphocyte proliferation. J Exp Med. 1976 Mar 1;143(3):529–540. doi: 10.1084/jem.143.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Solinger A. M., Ultee M. E., Margoliash E., Schwartz R. H. T-lymphocyte response to cytochrome c. I. Demonstration of a T-cell heteroclitic proliferative response and identification of a topographic antigenic determinant on pigeon cytochrome c whose immune recognition requires two complementing major histocompatibility complex-linked immune response genes. J Exp Med. 1979 Oct 1;150(4):830–848. doi: 10.1084/jem.150.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sprent J. Effects of blocking helper T cell induction in vivo with anti-Ia antibodies. Possible role of I-A/E hybrid molecules as restriction elements. J Exp Med. 1980 Oct 1;152(4):996–1010. doi: 10.1084/jem.152.4.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sredni B., Tse H. Y., Chen C., Schwartz R. H. Antigen-specific clones of proliferating T lymphocytes. I. Methodology, specificity, and MHC restriction. J Immunol. 1981 Jan;126(1):341–347. [PubMed] [Google Scholar]
  23. Yano A., Schwartz R. H., Paul W. E. Antigen presentation in the murine T-lymphocyte proliferative response. I. Requirement for genetic identity at the major histocompatibility complex. J Exp Med. 1977 Sep 1;146(3):828–843. doi: 10.1084/jem.146.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES