Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Feb 1;155(2):403–414. doi: 10.1084/jem.155.2.403

Participation of the major histocompatibility complex in antibody recognition of viral antigens expressed on infected cells

PMCID: PMC2186597  PMID: 6173456

Abstract

The capacity of the antibody repertoire to recognize complex antigens on viral-infected cells was investigated at the level of monoclonal B cell responses. A majority of primary B cells responsive to PR8(H1N1)- infected H-2 syngeneic cells produced antibody that bound viral determinants only in the context of infected cells and not the isolated virion. An examination of the fine specificity of such antibodies revealed that most could be distinguished by a panel of cells infected with closely related heterologous H1 influenza strains. Indeed, most antibodies bound hemagglutinin determinants of PR8 exclusively, and few were broadly cross-reactive. An examination of the same antibodies for their recognition of cell surface antigens revealed that the majority recognized MHC-encoded antigenic determinants. Thus, most BALB.K (H-2k) primary B cells responsive to PR8-L919 (H-2k) cells produced monoclonal antibodies that bound PR8-antigens only in the context of H-2Dk- infected cells. Most C57BL/10 (H-2b) B cells responsive to PR8-EL4 (H- 2b) cells produced monoclonal antibodies that bound PR8 antigens only in the context of H-2Kb-infected cells. These latter antibodies were further shown to recognize that H-2Kb molecule by virtue of their capacity to be discriminated by a panel of PR8-infected H-2Kb mutant cells. These findings demonstrate that much of the antibody repertoire is capable of highly specific complex recognition of viral antigenic determinants in the context of the appropriate MHC alloantigen.

Full Text

The Full Text of this article is available as a PDF (991.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Poljak R. J., Saul F., Varga J. M., Richards F. F. The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1427–1430. doi: 10.1073/pnas.71.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  3. Bevan M. J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature. 1977 Sep 29;269(5627):417–418. doi: 10.1038/269417a0. [DOI] [PubMed] [Google Scholar]
  4. Braciale T. J., Andrew M. E., Braciale V. L. Heterogeneity and specificity of cloned lines of influenza-virus specific cytotoxic T lymphocytes. J Exp Med. 1981 Apr 1;153(4):910–923. doi: 10.1084/jem.153.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cancro M. P., Gerhard W., Klinman N. R. The diversity of the influenza-specific primary B-cell repertoire in BALB/c mice. J Exp Med. 1978 Mar 1;147(3):776–787. doi: 10.1084/jem.147.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doherty P. C., Biddison W. E., Bennink J. R., Knowles B. B. Cytotoxic T-cell responses in mice infected with influenza and vaccinia viruses vary in magnitude with H-2 genotype. J Exp Med. 1978 Aug 1;148(2):534–543. doi: 10.1084/jem.148.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ennis F. A., Martin W. J., Verbonitz M. W., Butchko G. M. Specificity studies on cytotoxic thymus-derived lymphocytes reactive with influenza virus-infected cells: evidence for dual recognition of H-2 and viral hemagglutinin antigens. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3006–3010. doi: 10.1073/pnas.74.7.3006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erb P., Feldmann M. The role of macrophages in the generation of T-helper cells. II. The genetic control of the macrophage-T-cell interaction for helper cell induction with soluble antigens. J Exp Med. 1975 Aug 1;142(2):460–472. doi: 10.1084/jem.142.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerhard W. The analysis of the monoclonal immune response to influenza virus. II. The antigenicity of the viral hemagglutinin. J Exp Med. 1976 Oct 1;144(4):985–995. doi: 10.1084/jem.144.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorczynski R. M., Kennedy M. J., MacRae S., Steele E. J., Cunningham A. J. Restriction of antigen recognition in mouse B lymphocytes by genes mapping within the major histocompatibility complex. J Immunol. 1980 Feb;124(2):590–596. [PubMed] [Google Scholar]
  11. Katz D. H. Adaptive differentiation of lymphocytes: theoretical implications for mechanisms of cell--cell recognition and regulation of immune responses. Adv Immunol. 1980;29:137–207. doi: 10.1016/s0065-2776(08)60044-9. [DOI] [PubMed] [Google Scholar]
  12. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz D. H., Skidmore B. J., Katz L. R., Bogowitz C. A. Adaptive differentiation of murine lymphocytes. I. Both T and B lymphocytes differentiating in F1 transplanted to parental chimeras manifest preferential cooperative activity for partner lymphocytes derived from the same parental type corresponding to the chimeric host. J Exp Med. 1978 Sep 1;148(3):727–745. doi: 10.1084/jem.148.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kindred B., Shreffler D. C. H-2 dependence of co-operation between T and B cells in vivo. J Immunol. 1972 Nov;109(5):940–943. [PubMed] [Google Scholar]
  15. Nairn R., Yamaga K., Nathenson S. G. Biochemistry of the gene products from murine MHC mutants. Annu Rev Genet. 1980;14:241–277. doi: 10.1146/annurev.ge.14.120180.001325. [DOI] [PubMed] [Google Scholar]
  16. Nisbet-Brown E., Singh B., Diener E. Antigen recognition. V. Requirement for histocompatibility between antigen-presenting cell and B cell in the response to a thymus-dependent antigen, and lack of allogeneic restriction between T and B cells. J Exp Med. 1981 Sep 1;154(3):676–687. doi: 10.1084/jem.154.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pierce S. K., Klinman N. R. Allogeneic carrier-specific enhancement of hapten-specific secondary B-cell responses. J Exp Med. 1976 Nov 2;144(5):1254–1262. doi: 10.1084/jem.144.5.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce S. K., Klinman N. R. Antibody-specific immunoregulation. J Exp Med. 1977 Aug 1;146(2):509–519. doi: 10.1084/jem.146.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pierce S. K., Klinman N. R., Maurer P. H., Merryman C. F. Role of the major histocompatibility gene products in regulating the antibody response to dinitrophenylated poly(L-Glu55,L-Ala35,L-Phe9)n. J Exp Med. 1980 Aug 1;152(2):336–349. doi: 10.1084/jem.152.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4298–4302. doi: 10.1073/pnas.71.11.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sherman L. A. Dissection of the B10.D2 anti-H-2Kb cytolytic T lymphocyte receptor repertoire. J Exp Med. 1980 Jun 1;151(6):1386–1397. doi: 10.1084/jem.151.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sprent J., Bruce J. Lymphoid function in F1 leads to parent chimeras: lack of evidence for adaptive differentiation of B cells or antigen-presenting cells. J Exp Med. 1979 Sep 19;150(3):715–720. doi: 10.1084/jem.150.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wylie D. E., Klinman N. R. The murine B cell repertoire responsive to an influenza-infected syngeneic cell line. J Immunol. 1981 Jul;127(1):194–198. [PubMed] [Google Scholar]
  26. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  27. Zinkernagel R. M. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. The H-2K structure involved is coded by a single cistron defined by H-2Kb mutant mice. J Exp Med. 1976 Feb 1;143(2):437–443. doi: 10.1084/jem.143.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. von Boehmer H., Haas W., Jerne N. K. Major histocompatibility complex-linked immune-responsiveness is acquired by lymphocytes of low-responder mice differentiating in thymus of high-responder mice. Proc Natl Acad Sci U S A. 1978 May;75(5):2439–2442. doi: 10.1073/pnas.75.5.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES