Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Feb 1;155(2):432–444. doi: 10.1084/jem.155.2.432

Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging

EAM Ross, N Anderson, HS Micklem
PMCID: PMC2186603  PMID: 7035599

Abstract

The mouse hematopoietic system was subjected to repeated depletion and regeneration either by serial transfer of bone marrow cells through lethally irradiated recipients or by repeated treatment with the cycle-active drug hydroxyurea (HU). The capacity of surviving stem cells to proliferate and self-renew was assayed at intervals by two methods: (a) the spleen colony method; and (b) competitive repopulation of irradiated recipients using chromosome markers, with normal bone marrow cells as an internal control. The progressive decline in stem cell function that occurred during serial transfer of bone marrow and that had already begun after a single transfer was not seen during HU treatment; up to 25 pairs of HU injections given over more than 1 yr had no discernible effect on the number of stem cells present 3 wk after the final injection or on their capacity to self-renew. Within 2 d after exposure to HU, the average self-renewal capacity of surviving stem cells was enhanced. This implies that the drug selectively eliminates poorly self-renewing stem cells and hence that these enter cycle more readily than stem cells with a high self-replicative potential. However, the fact of being in cycle at the time of injection did not of itself affect self-renewal. The results show that serial transfer of bone marrow is not a valid method for studying clonal aging phenomena because it does not fulfill the assumptions on which such studies are based. No evidence was obtained for any intrinsic limitation in the capacity of bone marrow populations for repeated regeneration after HU-induced depletion. However, this does not necessarily imply that individual hematopoietic clones are capable of indefinite expansion because hematopoiesis may (as suggested by the relative resistance of highly self-replicative stem cells to mitogenic signals) proceed on the basis of clonal succession.

Full Text

The Full Text of this article is available as a PDF (980.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNES D. W., FORD C. E., LOUTIT J. F. [Serial grafts of homologous bone marrow in irradiated mice]. Sang. 1959;30:762–765. [PubMed] [Google Scholar]
  2. BECKER A. J., MCCULLOCH E. A., SIMINOVITCH L., TILL J. E. THE EFFECT OF DIFFERING DEMANDS FOR BLOOD CELL PRODUCTION ON DNA SYNTHESIS BY HEMOPOIETIC COLONY-FORMING CELLS OF MICE. Blood. 1965 Sep;26:296–308. [PubMed] [Google Scholar]
  3. CUDKOWICZ G., UPTON A. C., SHEARER G. M., HUGHES W. L. LYMPHOCYTE CONTENT AND PROLIFERATIVE CAPACITY OF SERIALLY TRANSPLANTED MOUSE BONE MARROW. Nature. 1964 Jan 11;201:165–167. doi: 10.1038/201165a0. [DOI] [PubMed] [Google Scholar]
  4. Cairns J. Mutation selection and the natural history of cancer. Nature. 1975 May 15;255(5505):197–200. doi: 10.1038/255197a0. [DOI] [PubMed] [Google Scholar]
  5. Daniel C. W., De Ome K. B., Young J. T., Blair P. B., Faulkin L. J., Jr The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A. 1968 Sep;61(1):53–60. doi: 10.1073/pnas.61.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dexter T. M., Schofield R., Hendry J., Testa N. G. Congenital and induced defects in haemopoietic environments, stem cell proliferation and differentiation. Haematol Blood Transfus. 1979;24:73–78. doi: 10.1007/978-3-642-67483-9_10. [DOI] [PubMed] [Google Scholar]
  7. Gidáli J., Fehér I., Antal S. Some properties of the circulating hemopoietic stem cells. Blood. 1974 Apr;43(4):573–580. [PubMed] [Google Scholar]
  8. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. E., Astle C. M., Delaittre J. A. Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med. 1978 May 1;147(5):1526–1531. doi: 10.1084/jem.147.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harrison D. E. Normal function of transplanted marrow cell lines from aged mice. J Gerontol. 1975 May;30(3):279–285. doi: 10.1093/geronj/30.3.279. [DOI] [PubMed] [Google Scholar]
  11. Hayflick L. The biology of human aging. Am J Med Sci. 1973 Jun;265(6):432–445. doi: 10.1097/00000441-197306000-00001. [DOI] [PubMed] [Google Scholar]
  12. Hellman S., Botnick L. E., Hannon E. C., Vigneulle R. M. Proliferative capacity of murine hematopoietic stem cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):490–494. doi: 10.1073/pnas.75.1.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hendry J. H., Testa N. G., Lajtha L. G. Effect of repeated doses of x-rays or 14 MeV neutrons on mouse bone marrow. Radiat Res. 1974 Sep;59(3):645–652. [PubMed] [Google Scholar]
  14. Hodgson G. S., Bradley T. R., Martin R. F., Sumner M., Fry P. Recovery of proliferating haemopoietic progenitor cells after killing by hydroxyurea. Cell Tissue Kinet. 1975 Jan;8(1):51–60. doi: 10.1111/j.1365-2184.1975.tb01206.x. [DOI] [PubMed] [Google Scholar]
  15. Holliday R., Huschtscha L. I., Tarrant G. M., Kirkwood T. B. Testing the commitment theory of cellular aging. Science. 1977 Oct 28;198(4315):366–372. doi: 10.1126/science.910134. [DOI] [PubMed] [Google Scholar]
  16. KAY H. E. HOW MANY CELL-GENERATIONS? Lancet. 1965 Aug 28;2(7409):418–419. doi: 10.1016/s0140-6736(65)90763-4. [DOI] [PubMed] [Google Scholar]
  17. KROHN P. L. Review lectures on senescence. II. Heterochronic transplantation in the study of ageing. Proc R Soc Lond B Biol Sci. 1962 Dec 18;157:128–147. doi: 10.1098/rspb.1962.0066. [DOI] [PubMed] [Google Scholar]
  18. Lajtha L. G., Schofield R. Regulation of stem cell renewal and differentiation: possible significance in aging. Adv Gerontol Res. 1971;3:131–146. [PubMed] [Google Scholar]
  19. Lajtha L. G. Stem cell concepts. Differentiation. 1979;14(1-2):23–34. doi: 10.1111/j.1432-0436.1979.tb01007.x. [DOI] [PubMed] [Google Scholar]
  20. Lord B. I. Proliferation regulators in haemopoiesis. Clin Haematol. 1979 Jun;8(2):435–451. [PubMed] [Google Scholar]
  21. Micklem H. S., Ford C. E., Evans E. P., Ogden D. A. Compartments and cell flows within the mouse haemopoietic system. I. Restricted interchange between haemopoietic sites. Cell Tissue Kinet. 1975 May;8(3):219–232. doi: 10.1111/j.1365-2184.1975.tb01221.x. [DOI] [PubMed] [Google Scholar]
  22. Micklem H. S., Ford C. E., Evans E. P., Ogden D. A., Papworth D. S. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J Cell Physiol. 1972 Apr;79(2):293–298. doi: 10.1002/jcp.1040790214. [DOI] [PubMed] [Google Scholar]
  23. Micklem H. S., Ross E. Heterogeneity and ageing of haematopoietic stem cells. Ann Immunol (Paris) 1978 Feb-Mar;129(2-3):367–376. [PubMed] [Google Scholar]
  24. Ogden D. A., Mickliem H. S. The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation. 1976 Sep;22(3):287–293. doi: 10.1097/00007890-197609000-00010. [DOI] [PubMed] [Google Scholar]
  25. Orgel L. E. Ageing of clones of mammalian cells. Nature. 1973 Jun 22;243(5408):441–445. doi: 10.1038/243441a0. [DOI] [PubMed] [Google Scholar]
  26. Philips F. S., Sternberg S. S., Schwartz H. S., Cronin A. P., Sodergren J. E., Vidal P. M. Hydroxyurea. I. Acute cell death in proliferating tissues in rats. Cancer Res. 1967 Jan;27(1):61–75. [PubMed] [Google Scholar]
  27. SIMINOVITCH L., TILL J. E., MCCULLOCH E. A. DECLINE IN COLONY-FORMING ABILITY OF MARROW CELLS SUBJECTED TO SERIAL TRANSPLANTATION INTO IRRADIATED MICE. J Cell Physiol. 1964 Aug;64:23–31. doi: 10.1002/jcp.1030640104. [DOI] [PubMed] [Google Scholar]
  28. Schofield R. A comparative study of the repopulating potential of grafts from various haemopoietic sources: CFU repopulation. Cell Tissue Kinet. 1970 Apr;3(2):119–130. doi: 10.1111/j.1365-2184.1970.tb00259.x. [DOI] [PubMed] [Google Scholar]
  29. Schofield R. The pluripotent stem cell. Clin Haematol. 1979 Jun;8(2):221–237. [PubMed] [Google Scholar]
  30. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7–25. [PubMed] [Google Scholar]
  31. TILL J. E., MCCULLOCH E. A., SIMINOVITCH L. A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A. 1964 Jan;51:29–36. doi: 10.1073/pnas.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  33. Vogel H., Niewisch H., Matioli G. The self renewal probability of hemopoietic stem cells. J Cell Physiol. 1968 Dec;72(3):221–228. doi: 10.1002/jcp.1040720309. [DOI] [PubMed] [Google Scholar]
  34. Worton R. G., McCulloch E. A., Till J. E. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med. 1969 Jul 1;130(1):91–103. doi: 10.1084/jem.130.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES