Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Feb 1;155(2):460–474. doi: 10.1084/jem.155.2.460

Quantitative studies of in situ immune complex glomerulonephritis in the rat induced by planted, cationized antigen

T Oite, SR Batsford, MJ Mihatsch, H Takamiya, A Vogt
PMCID: PMC2186608  PMID: 6460074

Abstract

Cationized human IgG can bind to the rat glomerular basement membrane (GBM), act as planted antigen, and induce in situ immune complex formation accompanied by severe glomerulonephritis. Perfusion of highly cationized human IgG (isoelectric point {more than} 9.5) via the left renal artery resulted in preferential localization within the perfused kidney (up to 56 percent of dose injected); after intravenous administration, only 4 percent was bound to the kidneys. The planted antigen was localized along the glomerular capillary walls and was accessible for antibody administered intravenously 1 h after perfusion, when virtually no antigen remained in the circulation. Persistence of cationized human IgG in the perfused kidney was markedly prolonged when complexed with antibody; one-half the cationized human IgG was still present after 12 d. There was a difference in the disappearance rates of antigen and antibody, as cationized human IgG was removed faster from the kidney than the antibody, the binding of which remained almost unchanged during the first week. Renal perfusion of a minimum of 20 μg of cationized human IgG, followed by intravenous injection of antibody, regularly induced severe glomerulonephritis with a proteinuria of at least 100 mg/24 h. The degree and the persistence of proteinuria induced depended on the dose of cationized human IgG perfused. Experiments using radiolabeled antigen and antibody showed that after renal perfusion of 20 μg cationized human IgG, 11.1 μg was kidney bound at the time of antibody injection. At the onset of proteinuria, 4.0 μg of antigen and 31.9 μg of anti-human IgG antibody were present in the perfused kidney. Immunofluorescence revealed immune deposits consisting of cationized human IgG and rabbit IgG (anti-human IgG) along the GBM. The staining pattern was linear (confluent) during the first 2 d and became granular during the course of the disease. Electronmicroscopically, a prominent finding was the accumulation of dense deposits, mainly in the subepithelial space and beneath the slit pores.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batsford S. R., Takamiya M., Vogt A. A model of in situ immune complex glomerulonephritis in the rat employing cationized ferritin. Clin Nephrol. 1980 Nov;14(5):211–216. [PubMed] [Google Scholar]
  2. Batsford S., Oite T., Takamiya H., Vogt A. Anionic binding sites in the glomerular basement membrane: possible role in the pathogenesis of immune complex glomerulonephritis. Ren Physiol. 1980;3(1-6):336–340. doi: 10.1159/000172780. [DOI] [PubMed] [Google Scholar]
  3. Bigazzi P. E., Kosuda L. L., Hsu K. C., Andres G. A. Immune complex orchitis in vasectomized rabbits. J Exp Med. 1976 Feb 1;143(2):382–404. doi: 10.1084/jem.143.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B. M., Bohrer M. P., Baylis Ch, Deen W. M. Determinants of glomerular permselectivity: Insights derived from observations in vivo. Kidney Int. 1977 Oct;12(4):229–237. doi: 10.1038/ki.1977.107. [DOI] [PubMed] [Google Scholar]
  5. Clagett J. A., Wilson C. B., Weigle W. O. Interstitial immune complex thyroiditis in mice: the role of autoantibody to thyroglobulin. J Exp Med. 1974 Dec 1;140(6):1439–1456. doi: 10.1084/jem.140.6.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Couser W. G., Steinmuller D. R., Stilmant M. M., Salant D. J., Lowenstein L. M. Experimental glomerulonephritis in the isolated perfused rat kidney. J Clin Invest. 1978 Dec;62(6):1275–1287. doi: 10.1172/JCI109248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  8. Fish A. J., Michael A. F., Vernier R. L., Good R. A. Acute serum sickness nephritis in the rabbit. An immune deposit disease. Am J Pathol. 1966 Dec;49(6):997–1022. [PMC free article] [PubMed] [Google Scholar]
  9. Fleuren G., Grond J., Hoedemaeker P. J. In situ formation of subepithelial glomerular immune complexes in passive serum sickness. Kidney Int. 1980 May;17(5):631–637. doi: 10.1038/ki.1980.74. [DOI] [PubMed] [Google Scholar]
  10. Golbus S. M., Wilson C. B. Experimental glomerulonephritis induced by in situ formation of immune complexes in glomerular capillary wall. Kidney Int. 1979 Aug;16(2):148–157. doi: 10.1038/ki.1979.116. [DOI] [PubMed] [Google Scholar]
  11. Hawn C. V., Janeway C. A. HISTOLOGICAL AND SEROLOGICAL SEQUENCES IN EXPERIMENTAL HYPERSENSITIVITY. J Exp Med. 1947 May 31;85(6):571–590. doi: 10.1084/jem.85.6.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Izui S., Lambert P. H., Miescher P. A. In vitro demonstration of a particular affinity of glomerular basement membrane and collagen for DNA. A possible basis for a local formation of DNA-anti-DNA complexes in systemic lupus erythematosus. J Exp Med. 1976 Aug 1;144(2):428–443. doi: 10.1084/jem.144.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
  14. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kefalides N. A., Winzler R. J. The chemistry of glomerular basement membrane and its relation to collagen. Biochemistry. 1966 Feb;5(2):702–713. doi: 10.1021/bi00866a043. [DOI] [PubMed] [Google Scholar]
  18. Latta H., Johnston W. H., Stanley T. M. Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J Ultrastruct Res. 1975 Jun;51(3):354–376. doi: 10.1016/s0022-5320(75)80100-6. [DOI] [PubMed] [Google Scholar]
  19. Latta H., Johnston W. H. The glycoprotein inner layer of glomerular capillary basement membrane as a filtration barrier. J Ultrastruct Res. 1976 Oct;57(1):65–67. doi: 10.1016/s0022-5320(76)80055-x. [DOI] [PubMed] [Google Scholar]
  20. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  21. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  22. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salant D. J., Belok S., Stilmant M. M., Darby C., Couser W. G. Determinants of glomerular localization of subepithelial immune deposits: effects of altered antigen to antibody ratio, steroids, vasoactive amine antagonists, and aminonucleoside of puromycin on passive Heymann nephritis in rats. Lab Invest. 1979 Jul;41(1):89–99. [PubMed] [Google Scholar]
  24. Spiro R. G. Studies on the renal glomerular basement membrane. Preparation and chemical composition. J Biol Chem. 1967 Apr 25;242(8):1915–1922. [PubMed] [Google Scholar]
  25. UNANUE E. R., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. V. STUDIES ON THE INTERACTION OF NEPHROTOXIC ANTIBODIES WITH TISSUE OF THE RAT. J Exp Med. 1965 May 1;121:697–714. doi: 10.1084/jem.121.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. UNANUE E. R., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. VI. THE AUTOLOGOUS PHASE OF NEPHROTOXIC SERUM NEPHRITIS. J Exp Med. 1965 May 1;121:715–725. doi: 10.1084/jem.121.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Damme B. J., Fleuren G. J., Bakker W. W., Vernier R. L., Hoedemaeker P. J. Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis. Lab Invest. 1978 Apr;38(4):502–510. [PubMed] [Google Scholar]
  28. Vogt A., Schmidt H. U., Takamiya H., Batsford S. 'In situ' immune complex nephritis and basic proteins. Proc Eur Dial Transplant Assoc. 1980;17:613–620. [PubMed] [Google Scholar]
  29. Wilson C. B., Dixon F. J. Antigen quantitation in experimental immune complex glomerulonephritis. I. Acute serum sickness. J Immunol. 1970 Aug;105(2):279–290. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES