Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Apr 1;155(4):1063–1074. doi: 10.1084/jem.155.4.1063

Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells

PMCID: PMC2186638  PMID: 6460831

Abstract

On the basis of preceding studies showing that tumor-induced, T cell- mediated immunosuppression serves as an obstacle to adoptive immunotherapy of the Meth A fibrosarcoma, it was predicted that cyclophosphamide treatment of tumor bearers would remove this obstacle and allow passively transferred immune T cells to cause tumor regression. It was found that infusion of immune spleen cells alone had no effect on tumor growth, and cyclophosphamide alone caused a temporary halt in tumor progression. In contrast, combination therapy consisting of intravenous injection of 100 mg/kg of cyclophosphamide followed 1 h later by intravenous infusion of tumor-immune spleen cells caused small, as well as large tumors, to completely and permanently regress. Tumor regression caused by combination therapy was completely inhibited by intravenous infusion of splenic T cells from donors with established tumors, but not by spleen cells from normal donors. These suppressor T cells were eliminated from the spleen by treating the tumor-bearing donors with 100 mg/kg of cyclophosphamide. Immune T cells, in contrast, were resistant to this dose of cyclophosphamide. These results show that failure of intravenously-infused, tumor- sensitized T cells to cause regression of the Meth A fibrosarcoma growing in its syngeneic or semi-syngeneic host is caused by the presence of a tumor-induced population of cyclophosphamide-sensitive suppressor T cells.

Full Text

The Full Text of this article is available as a PDF (681.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dye E. S., North R. J., Mills C. D. Mechanisms of anti-tumor action of Corynebacterium parvum. I. Potentiated tumor-specific immunity and its therapeutic limitations. J Exp Med. 1981 Sep 1;154(3):609–620. doi: 10.1084/jem.154.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dye E. S., North R. J. T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med. 1981 Oct 1;154(4):1033–1042. doi: 10.1084/jem.154.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fefer A. Efficacy of cryopreserved spleen cells in murine tumor immunotherapy. Transplantation. 1972 Apr;13(4):439–440. doi: 10.1097/00007890-197204000-00017. [DOI] [PubMed] [Google Scholar]
  4. Glaser M. Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice. J Exp Med. 1979 Mar 1;149(3):774–779. doi: 10.1084/jem.149.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goto M., Mitsuoka A., Sugiyama M., Kitano M. Enhancement of delayed hypersensitivity reaction with varieties of anti-cancer drugs. A common biological phenomenon. J Exp Med. 1981 Jul 1;154(1):204–209. doi: 10.1084/jem.154.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenberg P. D., Cheever M. A., Fefer A. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2- lymphocytes. J Exp Med. 1981 Sep 1;154(3):952–963. doi: 10.1084/jem.154.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mills C. D., North R. J., Dye E. S. Mechanisms of anti-tumor action of Corynebacterium parvum. II. Potentiated cytolytic T cell response and its tumor-induced suppression. J Exp Med. 1981 Sep 1;154(3):621–630. doi: 10.1084/jem.154.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenberg S. A., Terry W. D. Passive immunotherapy of cancer in animals and man. Adv Cancer Res. 1977;25:323–388. doi: 10.1016/s0065-230x(08)60637-5. [DOI] [PubMed] [Google Scholar]
  9. Röllinghoff M., Starzinski-Powitz A., Pfizenmaier K., Wagner H. Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes. J Exp Med. 1977 Feb 1;145(2):455–459. doi: 10.1084/jem.145.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sy M. S., Dietz M. H., Germain R. N., Benacerraf B., Greene M. I. Antigen- and receptor-driven regulatory mechanisms. IV. Idiotype-bearing I-J+ suppressor T cell factors induce second-order suppressor T cells which express anti-idiotypic receptors. J Exp Med. 1980 May 1;151(5):1183–1195. doi: 10.1084/jem.151.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES