Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Apr 1;155(4):1025–1036. doi: 10.1084/jem.155.4.1025

Studies of defective tolerance induction in NZB mice. Evidence for a marrow pre-T cell defect

PMCID: PMC2186644  PMID: 6977614

Abstract

NZB mice manifest a defect in tolerance induction by deaggregated heterologous gamma globulins. We have used an adoptive transfer system to study the defect. Thymectomized, intact, or thymectomized recipients given thymic epithelial grafts were studied after lethal irradiation and reconstitution with NZB, DBA/2, or (NZB x DBA(F1 marrow depleted of mature T cells. NZB thymocytes were responsible for the tolerance defect of NZB mice. The information for the defect was present in the NZB marrow prethymocyte. That defect could only be expressed when there was further maturation in association with a thymus. However, the normal DBA/2 thymic epithelium served as well as the abnormal NZB thymic epithelium. These studies resolve existing conflicts as to whether the NZB marrow or thymus is responsible for the loss of tolerance in association with autoimmunity.

Full Text

The Full Text of this article is available as a PDF (733.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach J. F., Dardenne M., Salomon J. C. Studies on thymus products. IV. Absence of serum 'thymic activity' in adult NZB and (NZB x NZW) F1 mice. Clin Exp Immunol. 1973 Jun;14(2):247–256. [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature. 1977 Sep 29;269(5627):417–418. doi: 10.1038/269417a0. [DOI] [PubMed] [Google Scholar]
  3. DeHeer D. H., Edgington T. S. Evidence for a B lymphocyte defect underlying the anti-X anti-erythrocyte autoantibody response of NZB mice. J Immunol. 1977 May;118(5):1858–1863. [PubMed] [Google Scholar]
  4. Gershon R. K., Eardley D. D., Durum S., Green D. R., Shen F. W., Yamauchi K., Cantor H., Murphy D. B. Contrasuppression. A novel immunoregulatory activity. J Exp Med. 1981 Jun 1;153(6):1533–1546. doi: 10.1084/jem.153.6.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gershwin M. E., Castles J. J., Erickson K., Ahmed A. Studies of congenitally immunologic mutant New Zealand mice. II. Absence of T cell progenitor populations and B cell defects of congenitally athymic (nude) New Zealand Black (NZB) mice. J Immunol. 1979 May;122(5):2020–2025. [PubMed] [Google Scholar]
  6. Goldings E. A., Cohen P. L., McFadden S. F., Ziff M., Vitetta E. S. Defective B cell tolerance in adult (NZB X MZW)F1 mice. J Exp Med. 1980 Sep 1;152(3):730–735. doi: 10.1084/jem.152.3.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huston D. P., Steinberg A. D. NZB cytotoxic lymphocyte responses. Kinetic analyses. J Exp Med. 1980 Sep 1;152(3):748–753. doi: 10.1084/jem.152.3.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Izui S., McConahey P. J., Dixon F. J. Increased spontaneous polyclonal activation of B lymphocytes in mice with spontaneous autoimmune disease. J Immunol. 1978 Dec;121(6):2213–2219. [PubMed] [Google Scholar]
  9. Izui S., McConahey P. J., Theofilopoulos A. N., Dixon F. J. Association of circulating retroviral gp70-anti-gp70 immune complexes with murine systemic lupus erythematosus. J Exp Med. 1979 May 1;149(5):1099–1116. doi: 10.1084/jem.149.5.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kincade P. W., Lee G., Fernandes G., Moore M. A., Williams N., Good R. A. Abnormalities in clonable B lymphocytes and myeloid progenitors in autoimmune NZB mice. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3464–3468. doi: 10.1073/pnas.76.7.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laskin C. A., Taurog J. D., Smathers P. A., Steinberg A. D. Studies of defective tolerance in murine lupus. J Immunol. 1981 Nov;127(5):1743–1747. [PubMed] [Google Scholar]
  12. Longo D. L., Schwartz R. H. Gene complementation. Neither Ir-GLphi gene need be present in the proliferative T cell to generate an immune response to Poly(Glu55Lys36Phe9)n. J Exp Med. 1980 Jun 1;151(6):1452–1467. doi: 10.1084/jem.151.6.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manny N., Datta S. K., Schwartz R. S. Synthesis of IgM by cells of NZB and SWR mice and their crosses. J Immunol. 1979 Apr;122(4):1220–1227. [PubMed] [Google Scholar]
  14. Matzinger P., Mirkwood G. In a fully H-2 incompatible chimera, T cells of donor origin can respond to minor histocompatibility antigens in association with either donor or host H-2 type. J Exp Med. 1978 Jul 1;148(1):84–92. doi: 10.1084/jem.148.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morton J. I., Siegel B. V., Moore R. D. Transplantation of autoimmune potential. II. Glomerulonephritis in lethally irradiated DBA/2 recipients of NZB bone marrow cells. Transplantation. 1975 Jun;19(6):464–469. [PubMed] [Google Scholar]
  16. Morton J. I., Siegel B. V. Radiation sensitivity of New Zealand black mice and the development of autoimmune disease and neoplasia. Proc Natl Acad Sci U S A. 1971 Jan;68(1):124–126. doi: 10.1073/pnas.68.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morton J. I., Siegel B. V. Transplantation of autoimmune potential. I. Development of antinuclear antibodies in H-2 histocompatible recipients of bone marrow from New Zealand Black mice. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2162–2165. doi: 10.1073/pnas.71.6.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morton J. I., Siegel B. V. Transplantation of autoimmune potential. III. Immunological hyper-responsiveness and elevated endogenous spleen colony formation in lethally irradiated recipients of NZB bone marrow cells. Immunology. 1978 May;34(5):863–868. [PMC free article] [PubMed] [Google Scholar]
  19. Morton J. I., Siegel B. V. Transplantation of autoimmune potential. IV. Reversal of the NZB autoimmune syndrome by bone marrow transplantation. Transplantation. 1979 Feb;27(2):133–134. [PubMed] [Google Scholar]
  20. Moutsopoulos H. M., Boehm-Truitt M., Kassan S. S., Chused T. M. Demonstration of activation of B lymphocytes in New Zealand black mice at birth by an immunoradiometric assay for murine IgM. J Immunol. 1977 Nov;119(5):1639–1644. [PubMed] [Google Scholar]
  21. Nakajima P. B., Datta S. K., Schwartz R. S., Huber B. T. Localization of spontaneously hyperactive B cells of NZB mice to a specific B cell subset. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4613–4616. doi: 10.1073/pnas.76.9.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parker L. M., Chused T. M., Steinberg A. D. Immunofluorescence studies on thymocytotoxic antibody from New Zealand Black mice. J Immunol. 1974 Jan;112(1):285–292. [PubMed] [Google Scholar]
  23. Raveché E. S., Steinberg A. D., Klassen L. W., Tjio J. H. Genetic studies in NZB mice. I. Spontaneous autoantibody production. J Exp Med. 1978 May 1;147(5):1487–1502. doi: 10.1084/jem.147.5.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staples P. J., Steinberg A. D., Talal N. Induction of immunologic tolerance in older New Zealand mice repopulated with young spleen, bone marrow, or thymus. J Exp Med. 1970 Jun 1;131(6):1223–1238. doi: 10.1084/jem.131.6.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Staples P. J., Talal N. Relative inability to induce tolerance in adult NZB and NZB-NZW F1 mice. J Exp Med. 1969 Jan 1;129(1):123–139. doi: 10.1084/jem.129.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinberg A. D., Huston D. P., Taurog J. D., Cowdery J. S., Ravecheé E. S. The cellular and genetic basis of murine lupus. Immunol Rev. 1981;55:121–154. doi: 10.1111/j.1600-065x.1981.tb00341.x. [DOI] [PubMed] [Google Scholar]
  27. Steinberg A. D., Law L. D., Talal N. The role of NZB-NZW F1 thymus in experimental tolerance and auto-immunity. Arthritis Rheum. 1970 Jul-Aug;13(4):369–377. doi: 10.1002/art.1780130402. [DOI] [PubMed] [Google Scholar]
  28. Stockinger H., Bartlett R., Pfizenmaier K., Röllinghoff M., Wagner H. H-2 restriction as a consequence of intentional priming. Frequency analysis of alloantigen-restricted, trinitrophenyl-specific cytotoxic T lymphocyte precursors within thymocytes of normal mice. J Exp Med. 1981 Jun 1;153(6):1629–1639. doi: 10.1084/jem.153.6.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taurog J. D., Raveche E. S., Smathers P. A., Glimcher L. H., Huston D. P., Hansen C. T., Steinberg A. D. T cell abnormalities in NZB mice occur independently of autoantibody production. J Exp Med. 1981 Feb 1;153(2):221–234. doi: 10.1084/jem.153.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taurog J. D., Smathers P. A., Steinberg A. D. Evidence for abnormalities in separate lymphocyte populations in NZB mice. J Immunol. 1980 Aug;125(2):485–490. [PubMed] [Google Scholar]
  31. Theofilopoulos A. N., Dixon F. J. Etiopathogenesis of murine SLE. Immunol Rev. 1981;55:179–216. doi: 10.1111/j.1600-065x.1981.tb00343.x. [DOI] [PubMed] [Google Scholar]
  32. Wagner H., Hardt C., Bartlett R., Stockinger H., Röllinghoff M., Rodt H., Pfizenmaier K. Frequency analysis of cytotoxic T lymphocyte precursors in chimeric mice. Evidence for intrathymic maturation of clonally distinct self-major histocompatibility complex- and allo-major histocompatiblilty complex-restricted virus-specific T cells. J Exp Med. 1981 Jun 1;153(6):1517–1532. doi: 10.1084/jem.153.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wagner H., Röllinghoff M., Rodt H., Thierfelder S. T cell-mediated cytotoxic immune responsiveness of chimeric mice bearing a thymus graft fully allogeneic to the graft of lymphoid stem cells. Eur J Immunol. 1980 Jul;10(7):521–525. doi: 10.1002/eji.1830100707. [DOI] [PubMed] [Google Scholar]
  34. Warner N. L., Moore M. A. Defects in hematopoietic differentiation in NZB and NZC mice. J Exp Med. 1971 Aug 1;134(2):313–334. doi: 10.1084/jem.134.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weir D. M., McBride W., Naysmith J. D. Immune response to a soluble protein antigen in NZB mice. Nature. 1968 Sep 21;219(5160):1276–1277. doi: 10.1038/2191276a0. [DOI] [PubMed] [Google Scholar]
  36. Yamauchi K., Green D. R., Eardley D. D., Murphy D. B., Gershon R. K. Immunoregulatory circuits that modulate responsiveness to suppressor cell signal. Failure of B10 mice to respond to suppressor factors can be overcome by quenching the contrasuppressor circuit. J Exp Med. 1981 Jun 1;153(6):1547–1561. doi: 10.1084/jem.153.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. de Vries M. J., Hijmans W. Pathological changes of thymic epithelial cells and autoimmune disease in NZB, NZW and (NZB x NZW)F1 mice. Immunology. 1967 Feb;12(2):179–196. [PMC free article] [PubMed] [Google Scholar]
  39. von Boehmer H., Haas W., Jerne N. K. Major histocompatibility complex-linked immune-responsiveness is acquired by lymphocytes of low-responder mice differentiating in thymus of high-responder mice. Proc Natl Acad Sci U S A. 1978 May;75(5):2439–2442. doi: 10.1073/pnas.75.5.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES