Abstract
The present studies have been carried out to characterize the regulatory influences acting upon defined pathways of T cell-dependent B cell activation. In these studies, it was demonstrated that high concentrations of free carrier strongly inhibited the MHC-restricted in vitro T cell-dependent antibody responses of primed Lyb-5- B cells to the corresponding carrier-hapten conjugate. In contrast, these same concentrations of free carrier failed to inhibit the T cell dependent responses of Lyb-5+ B cells to the same antigen. The inhibition of Lyb- 5- B cell responses by free carrier was shown to result from active suppression mediated by carrier-specific primed Lyt-1+2- T cells and to require the additional participation of unprimed Lyt-1-2+ T cells. The activation of this suppression was antigen-specific, but suppression once activated was antigen nonspecific in its effect. These findings thus demonstrate that distinct pathways of B cell activation can be independently regulated by T suppressor network influences, and that these pathways therefore constitute potentially independent components of the immune response to a given antigenic stimulus.
Full Text
The Full Text of this article is available as a PDF (687.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asano Y., Singer A., Hodes R. J. Role of the major histocompatibility complex in T cell activation of B cell subpopulations. Major histocompatibility complex-restricted and -unrestricted B cell responses are mediated by distinct B cell subpopulations. J Exp Med. 1981 Oct 1;154(4):1100–1115. doi: 10.1084/jem.154.4.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benacerraf B., Germain R. N. A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol. 1981;13(1):1–10. doi: 10.1111/j.1365-3083.1981.tb00104.x. [DOI] [PubMed] [Google Scholar]
- Cantor H., Gershon R. K. Immunological circuits: cellular composition. Fed Proc. 1979 Jun;38(7):2058–2064. [PubMed] [Google Scholar]
- Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
- Davies A. J. The thymus and the cellular basis of immunity. Transplant Rev. 1969;1:43–91. doi: 10.1111/j.1600-065x.1969.tb00136.x. [DOI] [PubMed] [Google Scholar]
- Eardley D. D., Hugenberger J., McVay-Boudreau L., Shen F. W., Gershon R. K., Cantor H. Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J Exp Med. 1978 Apr 1;147(4):1106–1115. doi: 10.1084/jem.147.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodes R. J., Kimoto M., Hathcock K. S., Fathman C. G., Singer A. Functional helper activity of monoclonal T cell populations: antigen-specific and H-2 restricted cloned T cells provide help for in vitro antibody responses to trinitrophenyl-poly(LTyr,Glu)-poly(DLAla)--poly(LLys). Proc Natl Acad Sci U S A. 1981 Oct;78(10):6431–6435. doi: 10.1073/pnas.78.10.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodes R. J., Singer A. Cellular and genetic control of antibody responses in vitro. I. Cellular requirements for the generation of genetically controlled primary IgM responses to soluble antigens. Eur J Immunol. 1977 Dec;7(12):892–897. doi: 10.1002/eji.1830071214. [DOI] [PubMed] [Google Scholar]
- Kontiainen S., Feldmann M. Suppressor-cell induction in vitro. IV. Target of antigen-specific suppressor factor and its genetic relationships. J Exp Med. 1978 Jan 1;147(1):110–122. doi: 10.1084/jem.147.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letvin N. L., Benacerraf B., Germain R. N. Plaque-forming cell responses to trinitrophenyl (TNP)-L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in microcultures are not under conventional Ir gene control. J Immunol. 1981 Oct;127(4):1534–1538. [PubMed] [Google Scholar]
- Mage M. G., McHugh L. L., Rothstein T. L. Mouse lymphocytes with and without surface immunoglobulin: preparative scale separation in polystyrene tissue culture dishes coated with specifically purified anti-immunoglobulin. J Immunol Methods. 1977;15(1):47–56. doi: 10.1016/0022-1759(77)90016-3. [DOI] [PubMed] [Google Scholar]
- McDougal J. S., Shen F. W., Elster P. Generation of T helper cells in vitro. V. Antigen-specific Ly1+ T cells mediate the helper effect and induce feedback suppression. J Immunol. 1979 Feb;122(2):437–442. [PubMed] [Google Scholar]
- Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
- Pierce C. W., Kapp J. A. Regulation of immune responses by suppressor T cells. Tohoku J Exp Med. 1976;5:91–143. [PubMed] [Google Scholar]
- Singer A., Morrissey P. J., Hathcock K. S., Ahmed A., Scher I., Hodes R. J. Role of the major histocompatibility complex in T cell activation of B cell subpopulations Lyb-5+ and Lyb-5- B cell subpopulations differ in their requirement for major histocompatibility complex-restricted T cell recognition. J Exp Med. 1981 Aug 1;154(2):501–516. doi: 10.1084/jem.154.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada T., Okumura K. The role of antigen-specific T cell factors in the immune response. Adv Immunol. 1979;28:1–87. doi: 10.1016/s0065-2776(08)60799-3. [DOI] [PubMed] [Google Scholar]