Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Jun 1;155(6):1623–1637. doi: 10.1084/jem.155.6.1623

Down-regulation of mannosyl receptor-mediated endocytosis and antigen F4/80 in bacillus calmette-guerin-activated mouse macrophages. Role of T lymphocytes and lymphokines

AB Ezekowitz, S Gordon
PMCID: PMC2186710  PMID: 6978922

Abstract

Bacillus Calmette-Guerin (BCG) infection alters the surface and endocytic properties of mouse peritoneal macrophages (PM) compared with thioglycollate- elicited (TPM) or resident PM (RPM). Expression of Ia antigen (Ag) is enhanced up to fourfold, but plasma membrane receptors that mediate binding and uptake of mannosyl/fucosyl-terminated glycoconjugates (MFR), Fc receptors, and the macrophage (mφ)-specific Ag F4/80 are reduced by 50-80 percent. Levels of Mac-1 remain relatively stable. These changes are accompanied by enhanced secretion of O(2)(-), after further stimulation with phorbyl myristate acetate, and of plasminogen activator. Both these products are released by TPM, but not RPM. The characteristic surface phenotype of BCG-PM can also be induced by injection of C. parvum, another mφ- activating agent, but not by thioglycollate broth, lipopolysaccharide, or proteose peptone. Purified protein derivative (PPD) and N-acetylmuramyl-L- alanyl-D-isoglutamine. 2H(2)0 are soluble agents with partial activity. Alteration of mφ markers by BCG infection depends on T lymphocyte function, although studies with nude mice indicate that other pathways may also serve to modify the surface of the mφ. Mφ from uninfected animals displayed all markers of activation after adoptive transfer of specifically-sensitised lymphocytes with PPD, intraperitoneally, or after co- cultivation. Treatment of primed lymphocytes with anti-Thy-1 antibody and complement ablated this effect. Lymphokines obtaned by Ag or mitogen stimulation induced similar changes in TPM and RPM. Mannose-specific endocytosis decayed rapidly, time 1/2 approximately equal to 16 h and stabilized at approximately 25 percent of control values. Single-cell analysis showed that residual MFR activity was uniform in the target population. Loss of Ag F4/80 after activation by lymphocyte and PPD was less marked than after infection (35 percent vs 80 percent), unlike MFR activity, which declined to a similar extent. Induction of mφ Ia by lymphokine reached a peak after 2-3 d and was lost within 2 d of its removal. Recovery of MFR and F4/80 was incomplete under these conditions. These studies establish that activated mφ known to display enhanced antimicrobial/anticellular activity express markedly different surface properties distinct from elicited or resident cells. The role of antigen- stimulated T cell products in regulating mφ function is confirmed, and down-regulation of mannosyl-receptor-mediated endocytosis provides a sensitive, quantitative, and cell-specific new marker to study their properties and mechanism of action. Extensive, but selective remodeling of mφ plasma membrane structure could play an important role in controlling recognition and effector mechanisms of the activated mφ.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M., Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981 Oct;11(10):805–815. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M., Curnutte J. T., Kipnes B. S. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes. J Clin Invest. 1975 Oct;56(4):1035–1042. doi: 10.1172/JCI108150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheers C., Waller R. Activated macrophages in congenitally athymic "nude mice" and in lethally irradiate mice. J Immunol. 1975 Sep;115(3):844–847. [PubMed] [Google Scholar]
  4. Cummings N. P., Pabst M. J., Johnston R. B., Jr Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide. J Exp Med. 1980 Dec 1;152(6):1659–1669. doi: 10.1084/jem.152.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cutler J. E., Poor A. H. Effect of mouse phagocytes on Candida albicans in in vivo chambers. Infect Immun. 1981 Mar;31(3):1110–1116. doi: 10.1128/iai.31.3.1110-1116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edelson P. J., Cohn Z. A. 5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations. J Exp Med. 1976 Dec 1;144(6):1581–1595. doi: 10.1084/jem.144.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ezekowitz R. A., Austyn J., Stahl P. D., Gordon S. Surface properties of bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia. J Exp Med. 1981 Jul 1;154(1):60–76. doi: 10.1084/jem.154.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freedman V. H., Calvelli T. A., Silagi S., Silverstein S. C. Macrophages elicited with heat-killed bacillus Calomette-Guérin protect C57BL/6J mice against a syngeneic melanoma. J Exp Med. 1980 Sep 1;152(3):657–673. doi: 10.1084/jem.152.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghaffar A. The activation of macrophages by Corynebacterium parvum: effect of anti-complementary agents cobra venom factor and sodium cyanate. J Reticuloendothel Soc. 1980 Mar;27(3):327–335. [PubMed] [Google Scholar]
  10. Gordon S., Cohn Z. A. Bacille Calmette-Guérin infection in the mouse. Regulation of macrophage plasminogen activator by T lymphocytes and specific antigen. J Exp Med. 1978 Apr 1;147(4):1175–1188. doi: 10.1084/jem.147.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon S., Unkeless J. C., Cohn Z. A. Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis: evidence for a two-stage process. J Exp Med. 1974 Oct 1;140(4):995–1010. doi: 10.1084/jem.140.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirsch S., Austyn J. M., Gordon S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J Exp Med. 1981 Sep 1;154(3):713–725. doi: 10.1084/jem.154.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hünig T., Bevan M. J. Specificity of cytotoxic T cells from athymic mice. J Exp Med. 1980 Sep 1;152(3):688–702. doi: 10.1084/jem.152.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson W. J., Balish E. Macrophage function in germ-free, athymic (nu/nu), and conventional-flora (nu/+) mice. J Reticuloendothel Soc. 1980 Jul;28(1):55–66. [PubMed] [Google Scholar]
  15. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  17. Kaplan G., Unkeless J. C., Cohn Z. A. Insertion and turnover of macrophage plasma membrane proteins. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3824–3828. doi: 10.1073/pnas.76.8.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lafferty K. J., Andrus L., Prowse S. J. Role of lymphokine and antigen in the control of specific T cell responses. Immunol Rev. 1980;51:279–314. doi: 10.1111/j.1600-065x.1980.tb00325.x. [DOI] [PubMed] [Google Scholar]
  20. Lane F. C., Unanue E. R. Requirement of thymus (T) lymphocytes for resistance to listeriosis. J Exp Med. 1972 May 1;135(5):1104–1112. doi: 10.1084/jem.135.5.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lefford M. J. Transfer of adoptive immunity to tuberculosis in mice. Infect Immun. 1975 Jun;11(6):1174–1181. doi: 10.1128/iai.11.6.1174-1181.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu C. Y., Peters E., Unanue E. R. Ia-bearing macrophages in athymic mice: antigen presentation and regulation. J Immunol. 1981 Jun;126(6):2496–2498. [PubMed] [Google Scholar]
  23. Mahoney E. M., Scott W. A., Landsberger F. R., Hamill A. L., Cohn Z. A. Influence of fatty acyl substitution on the composition and function of macrophage membranes. J Biol Chem. 1980 May 25;255(10):4910–4917. [PubMed] [Google Scholar]
  24. McMaster W. R., Williams A. F. Monoclonal antibodies to Ia antigens from rat thymus: cross reactions with mouse and human and use in purification of rat Ia glycoproteins. Immunol Rev. 1979;47:117–137. doi: 10.1111/j.1600-065x.1979.tb00291.x. [DOI] [PubMed] [Google Scholar]
  25. Morahan P. S., Edelson P. J., Gass K. Changes in macrophage ectoenzymes associated with anti-tumor activity. J Immunol. 1980 Sep;125(3):1312–1317. [PubMed] [Google Scholar]
  26. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nathan C., Brukner L., Kaplan G., Unkeless J., Cohn Z. Role of activated macrophages in antibody-dependent lysis of tumor cells. J Exp Med. 1980 Jul 1;152(1):183–197. doi: 10.1084/jem.152.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nogueira N., Gordon S., Cohn Z. Trypanosoma cruzi: the immunological induction of macrophage plasminogen activator requires thymus-derived lymphocytes. J Exp Med. 1977 Jul 1;146(1):172–183. doi: 10.1084/jem.146.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. North R. J. Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol. 1973 Apr;7(1):166–176. doi: 10.1016/0008-8749(73)90193-7. [DOI] [PubMed] [Google Scholar]
  31. Scher M. G., Beller D. I., Unanue E. R. Demonstration of a soluble mediator that induces exudates rich in Ia-positive macrophages. J Exp Med. 1980 Dec 1;152(6):1684–1698. doi: 10.1084/jem.152.6.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sljivić V. S., Watson S. R. The adjuvant effect of Corynebacterium parvum: T-cell dependence of macrophage activation. J Exp Med. 1977 Jan 1;145(1):45–57. doi: 10.1084/jem.145.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Springer T., Galfré G., Secher D. S., Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979 Apr;9(4):301–306. doi: 10.1002/eji.1830090410. [DOI] [PubMed] [Google Scholar]
  34. Stahl P., Gordon S. Expression of a mannosyl-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids. J Cell Biol. 1982 Apr;93(1):49–56. doi: 10.1083/jcb.93.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Steeg P. S., Moore R. N., Oppenheim J. J. Regulation of murine macrophage Ia-antigen expression by products of activated spleen cells. J Exp Med. 1980 Dec 1;152(6):1734–1744. doi: 10.1084/jem.152.6.1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinman R. M., Nogueira N., Witmer M. D., Tydings J. D., Mellman I. S. Lymphokine enhances the expression and synthesis of Ia antigens on cultured mouse peritoneal macrophages. J Exp Med. 1980 Nov 1;152(5):1248–1261. doi: 10.1084/jem.152.5.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sultzer B. M., Nilsson B. S. PPD tuberculin--a B-cell mitogen. Nat New Biol. 1972 Dec 13;240(102):198–200. doi: 10.1038/newbio240198a0. [DOI] [PubMed] [Google Scholar]
  38. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Werb Z., Cohn Z. A. Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J Biol Chem. 1972 Apr 25;247(8):2439–2446. [PubMed] [Google Scholar]
  40. Yin H. L., Aley S., Bianco C., Cohn Z. A. Plasma membrane polypeptides of resident and activated mouse peritoneal macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2188–2191. doi: 10.1073/pnas.77.4.2188. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES