Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Jun 1;155(6):1653–1664. doi: 10.1084/jem.155.6.1653

Uptake and metabolism of monohydroxy-eicosatetraenoic acids by macrophages

PMCID: PMC2186712  PMID: 6951919

Abstract

Within 5 min, resting macrophages metabolize microM quantities of exogenous arachidonic acid (20:4) to cyclooxygenase and lipoxygenase products. Mono-HETEs represent a major class of metabolites recovered from the medium. However, the quantity of mono-Hetes progressively decreases over a 60-min incubation period, with a concomitant increase in more polar lipoxygenase products, suggesting additional metabolic fates for these hydroxy acids. This was directly confirmed by exposing resident macrophage cultures to radiolabeled 15-, 12-, and 5-HETEs (1 microM). 12-30% of the recovered HETEs were cell-associated and predominantly esterified into phospholipid. High pressure liquid chromatography analyses of medium extracts indicated that 50% of each HETE was also converted to 10 or more metabolites over a 60-min time- course, a rate slower than for 20:4. The major metabolite generated from each mono-HETE had the elution characteristics of a di-HETE. The 5- HETE product has a triene spectrum similar to that of 5(S), 12(S)-di- HETE, whereas the 15- and 12-HETE products exhibited single ultraviolet absorption maxima, indicating a metabolic pathway for 5-HETE distinct from the other mono-HETEs. None of the stable cyclooxygenase products of 20:4 (6-keto PGF1 alpha, PGF2 alpha, PGE2, TXB2) nor polar metabolites of mono-HETEs are either incorporated or metabolized. The results indicate that macrophages have the capacity to specifically metabolize 20:4 and mono-HETEs to polar oxygenated products in the absence of a discernible trigger.

Full Text

The Full Text of this article is available as a PDF (973.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam I., Ohuchi K., Levine L. Determination of cyclooxygenase products and prostaglandin metabolites using high-pressure liquid chromatography and radioimmunoassay. Anal Biochem. 1979 Mar;93(2):339–345. doi: 10.1016/s0003-2697(79)80160-8. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bokoch G. M., Reed P. W. Stimulation of arachidonic acid metabolism in the polymorphonuclear leukocyte by an N-formylated peptide. Comparison with ionophore A23187. J Biol Chem. 1980 Nov 10;255(21):10223–10226. [PubMed] [Google Scholar]
  4. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borgeat P., Samuelsson B. Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds. J Biol Chem. 1979 Aug 25;254(16):7865–7869. [PubMed] [Google Scholar]
  6. Dahlén S. E., Björk J., Hedqvist P., Arfors K. E., Hammarström S., Lindgren J. A., Samuelsson B. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3887–3891. doi: 10.1073/pnas.78.6.3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Funk M. O., Isacc R., Porter N. A. Preparation and purification of lipid hydroperoxides from arachidonic and gamma-linolenic acids. Lipids. 1976 Feb;11(2):113–117. doi: 10.1007/BF02532660. [DOI] [PubMed] [Google Scholar]
  8. Hamberg M., Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3400–3404. doi: 10.1073/pnas.71.9.3400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansson G., Lindgren J. A., Dahlén S. E., Hedqvist P., Samuelsson B. Identification and biological activity of novel omega-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett. 1981 Jul 20;130(1):107–112. doi: 10.1016/0014-5793(81)80676-x. [DOI] [PubMed] [Google Scholar]
  10. Lewis R. A., Goetzl E. J., Drazen J. M., Soter N. A., Austen K. F., Corey E. J. Functional characterization of synthetic leukotriene B and its stereochemical isomers. J Exp Med. 1981 Oct 1;154(4):1243–1248. doi: 10.1084/jem.154.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindgren J. A., Hansson G., Samuelsson B. Formation of novel hydroxylated eicosatetraenoic acids in preparations of human polymorphonuclear leukocytes. FEBS Lett. 1981 Jun 15;128(2):329–335. doi: 10.1016/0014-5793(81)80110-x. [DOI] [PubMed] [Google Scholar]
  12. Maas R. L., Brash A. R., Oates J. A. A second pathway of leukotriene biosynthesis in porcine leukocytes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5523–5527. doi: 10.1073/pnas.78.9.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mahoney E. M., Hamill A. L., Scott W. A., Cohn Z. A. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4895–4899. doi: 10.1073/pnas.74.11.4895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rigaud M., Durand J., Breton J. C. Transfomration of arachidonic acid into 12-hydroxy-5,8,10,14-eicosatetraenoic acid by mouse peritoneal macrophages. Biochim Biophys Acta. 1979 May 25;573(2):408–412. doi: 10.1016/0005-2760(79)90074-2. [DOI] [PubMed] [Google Scholar]
  15. Rouzer C. A., Scott W. A., Cohn Z. A., Blackburn P., Manning J. M. Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4928–4932. doi: 10.1073/pnas.77.8.4928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rouzer C. A., Scott W. A., Hamill A. L., Cohn Z. A. Dynamics of leukotriene C production by macrophages. J Exp Med. 1980 Nov 1;152(5):1236–1247. doi: 10.1084/jem.152.5.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scott W. A., Pawlowski N. A., Andreach M., Cohn Z. A. Resting macrophages produce distinct metabolites from exogenous arachidonic acid. J Exp Med. 1982 Feb 1;155(2):535–547. doi: 10.1084/jem.155.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scott W. A., Pawlowski N. A., Murray H. W., Andreach M., Zrike J., Cohn Z. A. Regulation of arachidonic acid metabolism by macrophage activation. J Exp Med. 1982 Apr 1;155(4):1148–1160. doi: 10.1084/jem.155.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scott W. A., Zrike J. M., Hamill A. L., Kempe J., Cohn Z. A. Regulation of arachidonic acid metabolites in macrophages. J Exp Med. 1980 Aug 1;152(2):324–335. doi: 10.1084/jem.152.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stenson W. F., Parker C. W. 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid, a chemotactic fatty acid, is incorporated into neutrophil phospholipids and triglyceride. Prostaglandins. 1979 Aug;18(2):285–292. doi: 10.1016/0090-6980(79)90115-1. [DOI] [PubMed] [Google Scholar]
  21. Stenson W. F., Parker C. W. Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids. J Clin Invest. 1979 Nov;64(5):1457–1465. doi: 10.1172/JCI109604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Unger W. G., Stamford I. F., Bennett A. Extraction of prostaglandins from human blood. Nature. 1971 Oct 1;233(5318):336–337. doi: 10.1038/233336b0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES