Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Jul 1;156(1):31–40. doi: 10.1084/jem.156.1.31

Acute autoimmune encephalomyelitis in mice. II. Susceptibility is controlled by the combination of H-2 and histamine sensitization genes

PMCID: PMC2186733  PMID: 6806429

Abstract

The expression of acute experimental autoimmune encephalomyelitis (EAE) in mice is controlled by several dominant genes, H-2 and histamine sensitization genes. SJL/J and SWR/J, which are H-2s and H-2q, respectively, are susceptible to EAE and sensitive to Bordetella pertussis histamine-sensitizing factor (HSF), which produces a vasoactive amine hypersensitivity. Other H-2s or H-2q strains such as A.SW, B10.Q and several others do not develop acute EAE and are not sensitive to B. pertussis HSF. One strain tested, DDD (KsIsD?) is HSF sensitive but does not develop EAE (presumably because it lacks the appropriate responder H-2 haplotype). However, F1 hybrids between B10.S and DDD are sensitive to HSF and develop EAE. The induction and effector phases of acute EAE are apparently controlled by the combination of H-2 and HSF genes. A combination of the correct H-2 hapotype and histamine sensitivity is required for the development of acute EAE.

Full Text

The Full Text of this article is available as a PDF (731.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askenase P. W., Bursztajn S., Gershon M. D., Gershon R. K. T cell-dependent mast cell degranulation and release of serotonin in murine delayed-type hypersensitivity. J Exp Med. 1980 Nov 1;152(5):1358–1374. doi: 10.1084/jem.152.5.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  3. Bergman R. K., Munoz J. J., Portis J. L. Vascular permeability changes in the central nervous system of rats with hyperacute experimental allergic encephalomyelitis induced with the aid of a substance from Bordetella pertussis. Infect Immun. 1978 Aug;21(2):627–637. doi: 10.1128/iai.21.2.627-637.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergman R. K., Munoz J. Action of the histamine sensitizing factor from Bordetella pertussis on inbred and random bred strains of mice. Int Arch Allergy Appl Immunol. 1968;34(4):331–338. doi: 10.1159/000230127. [DOI] [PubMed] [Google Scholar]
  5. Bernard C. C. Experimental autoimmune encephalomyelitis in mice: genetic control of susceptibility. J Immunogenet. 1976 Aug;3(4):263–274. doi: 10.1111/j.1744-313x.1976.tb00583.x. [DOI] [PubMed] [Google Scholar]
  6. Bernard C. C., Leydon J., Mackay I. R. T cell necessity in the pathogenesis of experimental autoimmune encephalomyelitis in mice. Eur J Immunol. 1976 Sep;6(9):655–660. doi: 10.1002/eji.1830060912. [DOI] [PubMed] [Google Scholar]
  7. Fuchs S., Nevo D., Tarrab-Hazdai R., Yaar I. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature. 1976 Sep 23;263(5575):329–330. doi: 10.1038/263329a0. [DOI] [PubMed] [Google Scholar]
  8. Fujiwara S., Ohtani S. Experimental allergic encephalomyelitis (EAE) in two inbred guinea pigs: 1. Strain differences in developing chronic relapsing form of EAE. Jpn J Exp Med. 1980 Jun;50(3):173–178. [PubMed] [Google Scholar]
  9. Gershon R. K., Askenase P. W., Gershon M. D. Requirement for vasoactive amines for production of delayed-type hypersensitvity skin reactions. J Exp Med. 1975 Sep 1;142(3):732–747. doi: 10.1084/jem.142.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonatas N. K., Howard J. C. Inhibition of experimental allergic encephalomyelitis in rats severely depleted of T cells. Science. 1974 Nov 29;186(4166):839–841. doi: 10.1126/science.186.4166.839. [DOI] [PubMed] [Google Scholar]
  11. Günther E., Odenthal H., Wechsler W. Association between susceptibility to experimental allergic encephalomyelitis and the major histocompatibility system in congenic rat strains. Clin Exp Immunol. 1978 Jun;32(3):429–434. [PMC free article] [PubMed] [Google Scholar]
  12. Hashim G. A. Myelin basic protein: structure, function and antigenic determinants. Immunol Rev. 1978;39:60–107. doi: 10.1111/j.1600-065x.1978.tb00397.x. [DOI] [PubMed] [Google Scholar]
  13. LEE J. M., OLITSKY P. K. Simple method for enhancing development of acute disseminated encephalomyelitis in mice. Proc Soc Exp Biol Med. 1955 Jun;89(2):263–266. doi: 10.3181/00379727-89-21778. [DOI] [PubMed] [Google Scholar]
  14. Lennon V. A., Byrd W. J. Role of T lymphocytes in the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol. 1973 Apr;3(4):243–245. doi: 10.1002/eji.1830030413. [DOI] [PubMed] [Google Scholar]
  15. Levine S. Hyperacute, neutrophilic, and localized forms of experimental allergic encephalomyelitis: a review. Acta Neuropathol. 1974;28(3):179–189. doi: 10.1007/BF00719023. [DOI] [PubMed] [Google Scholar]
  16. Levine S., Sowinski R. Experimental allergic encephalomyelitis in inbred and outbred mice. J Immunol. 1973 Jan;110(1):139–143. [PubMed] [Google Scholar]
  17. Lindh J., Källén B. Genetics of susceptibility to experimental autoimmune encephalomyelitis studied in three rat strains. J Immunogenet. 1978 Oct;5(5):347–354. doi: 10.1111/j.1744-313x.1978.tb00663.x. [DOI] [PubMed] [Google Scholar]
  18. Linthicum D. S., Mackay I. R., Carnegie P. R. Measurement of cell-mediated inflammation in experimental murine autoimmune encephalomyelitis by radioisotopic labeling. J Immunol. 1979 Oct;123(4):1799–1805. [PubMed] [Google Scholar]
  19. Lisak R. P., Zweiman B., Kies M. W., Driscoll B. Experimental allergic encephalomyelitis in resistant and susceptible guinea pigs: in vivo and in vitro correlates. J Immunol. 1975 Feb;114(2 Pt 1):546–549. [PubMed] [Google Scholar]
  20. Lublin F. D., Maurer P. H., Berry R. G., Tippett D. Delayed, relapsing experimental allergic encephalomyelitis in mice. J Immunol. 1981 Mar;126(3):819–822. [PubMed] [Google Scholar]
  21. Mitsuzawa E., Yasuda T. Experimental allergic encephalitis (EAE) in mice: histological studies on EAE induced by myelin basic protein, and role of pertussis vaccine. Jpn J Exp Med. 1976 Aug;46(4):205–212. [PubMed] [Google Scholar]
  22. Montgomery I. N., Rauch H. C. Experimental allergic encephalomyelitis (EAE) in mice: primary control of EAE susceptibility is outside the H-2 complex. J Immunol. 1982 Jan;128(1):421–425. [PubMed] [Google Scholar]
  23. Raine C. S., Barnett L. B., Brown A., Behar T., McFarlin D. E. Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Lab Invest. 1980 Aug;43(2):150–157. [PubMed] [Google Scholar]
  24. Staruch M. J., Wood D. D. Genetic influences on the adjuvanticity of muramyl dipeptide in vivo. J Immunol. 1982 Jan;128(1):155–160. [PubMed] [Google Scholar]
  25. Steinman L., Smith M. E., Forno L. S. Genetic control of susceptibility to experimental allergic neuritis and the immune response to P2 protein. Neurology. 1981 Aug;31(8):950–954. doi: 10.1212/wnl.31.8.950. [DOI] [PubMed] [Google Scholar]
  26. Wardlaw A. C. Inheritance of responsiveness to pertussis HSF in mice. Int Arch Allergy Appl Immunol. 1970;38(6):573–589. doi: 10.1159/000230313. [DOI] [PubMed] [Google Scholar]
  27. Webb C., Teitelbaum D., Arnon R., Sela M. Correlation between strain differences in susceptibility to experimental allergic encephalomyelitis and the immune response to encephalitogenic protein in inbred guinea pigs. Immunol Commun. 1973;2(2):185–192. doi: 10.3109/08820137309022791. [DOI] [PubMed] [Google Scholar]
  28. Yasuda T., Tsumita T., Nagai Y., Mitsuzawa E., Ohtani S. Experimental allergic encephalomyelitis (EAE) in mice. I. Induction of EAE with mouse spinal cord homogenate and myelin basic protein. Jpn J Exp Med. 1975 Oct;45(5):423–427. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES