Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Aug 1;156(2):465–479. doi: 10.1084/jem.156.2.465

I-J restrictions on the activation and interaction of parental and F1- derived TS3 suppressor cells

PMCID: PMC2186750  PMID: 6212624

Abstract

An experimental system was developed to independently analyze the H-2 and Igh genetic restrictions at two steps of the 4-hydroxy-3- nitrophenylacetyl hapten (NP) suppressor cell pathway. This experimental system allowed genetic analysis of the activation of TS3 cells by hybridoma-derived TsF2 and independent analysis of the genetic restrictions that controlled the interaction of the TS3 cells with their target population. Thus, TS3 cells were activated in vitro with monoclonal H-2b or H-2k-derived TsF2. The activated TS3 cells were then adoptively transferred to TS3-depleted (cyclophosphamide-treated) recipients of various genotypes. When the TS3-containing lymph node population was activated in vitro for 2 h, suppressive activity was only noted in combinations of TSF2, TS3, and recipients that were matched at both the I-J and Igh gene complexes. The data indicate that TsF2 can activate TS3 cells and that both the activation and the interaction of TS3 cells are I-J and Igh restricted. Using (B10 x B10.BR)F1 mice as TS3 donors, we noted that H-2b-derived TsF2 activated these F1 TS3 cells to suppress NP-specific cutaneous sensitivity responses in H-2b but not in H-2k recipients. Reciprocal experiments using H-2k-derived TsF2 demonstrated that only an H-2k-restricted population was activated in the F1-derived TS3 cells. The simplest explanation to account for these observations is that two distinct populations, each of which is restricted to a parental I-J determinants, exists in the heterozygous F1 TS3 population. Furthermore, we demonstrated that both I-Jb and I-Jk determinants are expressed on F1-derived TS3 cells. These observations are discussed in terms of the mechanisms involved in immunoregulation.

Full Text

The Full Text of this article is available as a PDF (921.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B., Germain R. N. A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol. 1981;13(1):1–10. doi: 10.1111/j.1365-3083.1981.tb00104.x. [DOI] [PubMed] [Google Scholar]
  2. Eardley D. D., Hugenberger J., McVay-Boudreau L., Shen F. W., Gershon R. K., Cantor H. Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J Exp Med. 1978 Apr 1;147(4):1106–1115. doi: 10.1084/jem.147.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fresno M., McVay-Boudreau L., Nabel G., Cantor H. Antigen-specific T lymphocyte clones. II. Purification and biological characterization of an antigen-specific suppressive protein synthesized by cloned T cells. J Exp Med. 1981 May 1;153(5):1260–1274. doi: 10.1084/jem.153.5.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  5. Kapp J. A., Araneo B. A. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid50-L-tyrosine50. J Immunol. 1982 Jun;128(6):2447–2452. [PubMed] [Google Scholar]
  6. Meruelo D., Deak B., McDevitt H. O. Genetic control of cell-mediated responsiveness to an AKR tumor-associated antigen: mapping of the locus involved to the I region of the H-2 complex. J Exp Med. 1977 Nov 1;146(5):1367–1379. doi: 10.1084/jem.146.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Minami M., Okuda K., Furusawa S., Benacerraf B., Dorf M. E. Analysis of T cell hybridomas. I. Characterization of H-2 and Igh-restricted monoclonal suppressor factors. J Exp Med. 1981 Nov 1;154(5):1390–1402. doi: 10.1084/jem.154.5.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Okuda K., David C. S., Shreffler D. C. The role of gene products of the I-J subregion in mixed lymphocyte reactions. J Exp Med. 1977 Dec 1;146(6):1561–1573. doi: 10.1084/jem.146.6.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Okuda K., Minami M., Furusawa M., Dorf M. E. Analysis of T cell hybridomas. II. Comparisons among three distinct types of monoclonal suppressor factors. J Exp Med. 1981 Dec 1;154(6):1838–1851. doi: 10.1084/jem.154.6.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Okuda K., Minami M., Ju S. T., Dorf M. E. Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4557–4561. doi: 10.1073/pnas.78.7.4557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okuda K., Minami M., Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J Exp Med. 1981 Aug 1;154(2):468–479. doi: 10.1084/jem.154.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paul W. E., Shevach E. M., Pickeral S., Thomas D. W., Rosenthal A. S. Independent populations of primed F1 guinea pig T lymphocytes respond to antigen-pulsed parental peritoneal exudate cells. J Exp Med. 1977 Mar 1;145(3):618–630. doi: 10.1084/jem.145.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sredni B., Schwartz R. H. Antigen-specific, proliferating T lymphocyte clones. Methodology, specificity, MHC restriction and alloreactivity. Immunol Rev. 1981;54:187–223. doi: 10.1111/j.1600-065x.1981.tb00438.x. [DOI] [PubMed] [Google Scholar]
  14. Sunday M. E., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VIII. Suppressor cell pathways in cutaneous sensitivity responses. J Exp Med. 1981 Apr 1;153(4):811–822. doi: 10.1084/jem.153.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sunday M. E., Weinberger J. Z., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. J Immunol. 1980 Oct;125(4):1601–1605. [PubMed] [Google Scholar]
  16. Sunday M. E., Weinberger J. Z., Wolff S., Dorf M. E. Anti-receptor antibody-induced suppression of murine H-Y-specific delayed-type hypersensitivity responses. Eur J Immunol. 1981 Aug;11(8):626–631. doi: 10.1002/eji.1830110807. [DOI] [PubMed] [Google Scholar]
  17. Sy M. S., Dietz M. H., Nisonoff A., Germain R. N., Benacerraf B., Greene M. I. Antigen- and receptor-driven regulatory mechanisms. V. The failure of idiotype-coupled spleen cells to induce unresponsiveness in animals lacking the appropriate VH genes is caused by the lack of idiotype-matched targets. J Exp Med. 1980 Nov 1;152(5):1226–1235. doi: 10.1084/jem.152.5.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sy M. S., Nisonoff A., Germain R. N., Benacerraf B., Greene M. I. Antigen- and receptor-driven regulatory mechanisms. VIII. Suppression of idiotype-negative, p-azobenzenearsonate-specific T cells results from the interaction of an anti-idiotypic second-order T suppressor cell with a cross-reactive-idiotype-positive, p-azobenzenearsonate-primed T cell target. J Exp Med. 1981 Jun 1;153(6):1415–1425. doi: 10.1084/jem.153.6.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tada T., Okumura K. The role of antigen-specific T cell factors in the immune response. Adv Immunol. 1979;28:1–87. doi: 10.1016/s0065-2776(08)60799-3. [DOI] [PubMed] [Google Scholar]
  21. Taniguchi M., Saito T., Takei I., Tokuhisa T. Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor. J Exp Med. 1981 Jun 1;153(6):1672–1677. doi: 10.1084/jem.153.6.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taniguchi M., Tada T., Tokuhisa T. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. III. Dual gene control of the T-cell-mediated suppression of the antibody response. J Exp Med. 1976 Jul 1;144(1):20–31. doi: 10.1084/jem.144.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taniguchi M., Tokuhisa T. Cellular consequences in the suppression of antibody response by the antigen-specific T-cell factor. J Exp Med. 1980 Mar 1;151(3):517–527. doi: 10.1084/jem.151.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomas W. R., Smith F. I., Walker I. D., Miller J. F. Contact sensitivity to azobenzenearsonate and its inhibition after interaction of sensitized cells with antigen-conjugated cells. J Exp Med. 1981 May 1;153(5):1124–1137. doi: 10.1084/jem.153.5.1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waltenbaugh C., Thèze J., Kapp J. A., Benacerraf B. Immunosuppressive factor(s) specific for L-glutamic acid50-L-tyrosine50 (GT). III. Generation of suppressor T cells by a suppressive extract derived from GT-primed lymphoid cells. J Exp Med. 1977 Oct 1;146(4):970–985. doi: 10.1084/jem.146.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES