Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Sep 1;156(3):677–689. doi: 10.1084/jem.156.3.677

Identification of a T cell hybridoma that produces large quantities of macrophage-activating factor

PMCID: PMC2186780  PMID: 7050288

Abstract

A murine T cell hybridoma, constructed by fusion of alloantigen- activated T cells with the BW5147 T cell lymphoma, which produces a lymphokine capable of inducing tumoricidal activity in macrophages, has been identified. Lymphokine release could be detected only after mitogen stimulation of the T cell hybridoma culture. Upon cloning of the parental hybridoma, 24 out of 27 clones produced tumoricidal- inducing activity. Seven clones produced more cytocidal-inducing activity than did conventional supernatants, generated by concanavalin A stimulation of normal murine spleen cell cultures, which contained macrophage-activating factor (MAF). The supernatant of hybridoma clone 24/G1 was 25 times more active than conventional MAF preparations. Using supernatants from a variety of clones, the levels of macrophage- activating activity and interleukin 2 were found to vary independently of one another. The lymphokine produced by hybridoma clone 24/G1 appeared to be identical to conventional MAF by a variety of criteria including: (a) a requirement for a second signal for induction of tumoricidal activity in macrophages, (b) inactivation after incubation for 1 h at 65 degrees C, and (c) loss of activity after treatment at pH 4.0 but not at pH 5.0. Like conventional MAF, the hybridoma MAF eluted as a single peak after molecular sieve chromatography on Sephadex G100 and exhibited an apparent molecular weight of 55,000. Although somewhat heterogeneous, the majority of hybridoma 24/G1 MAF displayed an isoelectric point of 5.4 as determined using the chromatofocusing technique. These results thus illustrate the usefulness of T cell hybridomas in distinguishing between various lymphokine activities and indicate that the T cell hybridoma clone 24/G1 will be of particular usefulness in achieving the biochemical purification of substantial quantities of murine MAF.

Full Text

The Full Text of this article is available as a PDF (1,005.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Snyderman R. Do macrophages destroy nascent tumors? J Natl Cancer Inst. 1979 Jun;62(6):1341–1345. [PubMed] [Google Scholar]
  2. Altman A., Sferruzza A., Weiner R. G., Katz D. H. Constitutive and mitogen-induced production of T cell growth factor by stable T cell hybridoma lines. J Immunol. 1982 Mar;128(3):1365–1371. [PubMed] [Google Scholar]
  3. Beebe D. P., Cooper N. R. Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum. J Immunol. 1981 Apr;126(4):1562–1568. [PubMed] [Google Scholar]
  4. Cleveland R. P., Meltzer M. S., Zbar B. Tumor cytotoxicity in vitro by macrophages from mice infected with mycobacterium bovis strain BCG. J Natl Cancer Inst. 1974 Jun;52(6):1887–1895. doi: 10.1093/jnci/52.6.1887. [DOI] [PubMed] [Google Scholar]
  5. Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
  6. De Maeyer-Guignard J., Thang M. N., De Maeyer E. Binding of mouse interferon to polynucleotides. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3787–3790. doi: 10.1073/pnas.74.9.3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans R., Alexander P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 1970 Nov 14;228(5272):620–622. doi: 10.1038/228620a0. [DOI] [PubMed] [Google Scholar]
  8. Evans R., Alexander P. Mechanism of immunologically specific killing of tumour cells by macrophages. Nature. 1972 Mar 24;236(5343):168–170. doi: 10.1038/236168a0. [DOI] [PubMed] [Google Scholar]
  9. Fidler I. J. Activation in vitro of mouse macrophages by syngeneic, allogeneic, or xenogeneic lymphocyte supernatants. J Natl Cancer Inst. 1975 Nov;55(5):1159–1163. doi: 10.1093/jnci/55.5.1159. [DOI] [PubMed] [Google Scholar]
  10. Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Possible role of macrophage mediated nonspecific cytotoxicity in tumour resistance. Nat New Biol. 1972 Jan 12;235(54):48–50. doi: 10.1038/newbio235048a0. [DOI] [PubMed] [Google Scholar]
  11. Jett J. R., Mantovani A., Herberman R. B. Augmentation of human monocyte-mediated cytolysis by interferon. Cell Immunol. 1980 Sep 1;54(2):425–434. doi: 10.1016/0008-8749(80)90222-1. [DOI] [PubMed] [Google Scholar]
  12. Jones C. M., Braatz J. A., Herberman R. B. Production of both macrophage activating and inhibiting activities by a murine T-lymphocyte hybridoma. Nature. 1981 Jun 11;291(5815):502–503. doi: 10.1038/291502a0. [DOI] [PubMed] [Google Scholar]
  13. Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
  14. Katz D. H., Bechtold T. E., Altman A. Construction of T cell hybridomas secreting allogeneic effect factor. J Exp Med. 1980 Oct 1;152(4):956–968. doi: 10.1084/jem.152.4.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kniep E. M., Domzig W., Lohmann-Matthes M. L., Kickhöfen B. Partial purification and chemical characterization of macrophage cytotoxicity factor (MCF, MAF) and its separation from migration inhibitory factor (MIF). J Immunol. 1981 Aug;127(2):417–422. [PubMed] [Google Scholar]
  16. Leonard E. J., Ruco L. P., Meltzer M. S. Characterization of macrophage activation factor, a lymphokine that causes macrophages to become cytotoxic for tumor cells. Cell Immunol. 1978 Dec;41(2):347–357. doi: 10.1016/0008-8749(78)90232-0. [DOI] [PubMed] [Google Scholar]
  17. Lohmann-Matthes M. L., Ziegler F. G., Fischer H. Macrophage cytotoxicity factor. A product of in vitro sensitized thymus-dependent cells. Eur J Immunol. 1973 Jan;3(1):56–58. doi: 10.1002/eji.1830030112. [DOI] [PubMed] [Google Scholar]
  18. North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
  19. Pace J. L., Russell S. W. Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol. 1981 May;126(5):1863–1867. [PubMed] [Google Scholar]
  20. Piessens W. F., Churchill W. H., Jr, David Macrophages activated in vitro with lymphocyte mediators kill neoplastic but not normal cells. J Immunol. 1975 Jan;114(1 Pt 2):293–299. [PubMed] [Google Scholar]
  21. Ratliff T. L., Thomasson D. L., McCool R. E., Catalona W. J. Production of macrophage activation factor by a T-cell hybridoma. Cell Immunol. 1982 Apr;68(2):311–321. doi: 10.1016/0008-8749(82)90115-0. [DOI] [PubMed] [Google Scholar]
  22. Ruco L. P., Meltzer M. S. Macrophage activation for tumor cytotoxicity: induction of tumoricidal macrophages by supernatants of PPD-stimulated Bacillus Calmette-Guérin-immune spleen cell cultures. J Immunol. 1977 Sep;119(3):889–896. [PubMed] [Google Scholar]
  23. Schultz R. M., Chirigos M. A. Similarities among factors that render macrophages tumoricidal in lymphokine and interferon preparations. Cancer Res. 1978 Apr;38(4):1003–1007. [PubMed] [Google Scholar]
  24. Weinberg J. B., Chapman H. A., Jr, Hibbs J. B., Jr Characterization of the effects of endotoxin on macrophage tumor cell killing. J Immunol. 1978 Jul;121(1):72–80. [PubMed] [Google Scholar]
  25. Youngner J. S., Salvin S. B. Production and properties of migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. J Immunol. 1973 Dec;111(6):1914–1922. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES