Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Sep 1;156(3):930–935. doi: 10.1084/jem.156.3.930

Use of Epstein-Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas

PMCID: PMC2186788  PMID: 6286839

Abstract

HGPRTase-deficient EBV-transformed B cell lines were shown to be effective fusion partners with mitogen-activated human B cells for the construction of Ig-producing human B cell hybridomas. In a series of experiments using these lines and B cells from several tissue sources, approximatley 20% of the cultures plated were consistently positive for growth after hypoxanthine-aminopterin-thymidine selection and approximatley 30% of these synthesized significant new Ig. A marked increase in Ig secretion was observed after hybridization, which was due to new Ig; Ig from the parental lime was shown to disappear in several instances. Special analyses were carried out on a human hybridoma secreting antibody specific for tetanus toxoid and tetanus toxin and stable subclones were derived. These studies suggest that EBV- transformed lines will prove useful in human hybridization studies, thus making a large library of B cell lines available for the generation of human monoclonal antibodies.

Full Text

The Full Text of this article is available as a PDF (510.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonagura V. R., Kunkel H. G., Pernis B. Cellular localization of rheumatoid factor idiotypes. J Clin Invest. 1982 Jun;69(6):1356–1365. doi: 10.1172/JCI110575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Croce C. M., Linnenbach A., Hall W., Steplewski Z., Koprowski H. Production of human hybridomas secreting antibodies to measles virus. Nature. 1980 Dec 4;288(5790):488–489. doi: 10.1038/288488a0. [DOI] [PubMed] [Google Scholar]
  3. Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
  4. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  5. Lane H. C., Shelhamer J. H., Mostowski H. S., Fauci A. S. Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual. J Exp Med. 1982 Jan 1;155(1):333–338. doi: 10.1084/jem.155.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lever J. E., Nuki G., Seegmiller J. E. Expression of purine overproduction in a series of 8-azaguanine-resistant diploid human lymphoblast lines. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2679–2683. doi: 10.1073/pnas.71.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levy J. A., Virolainen M., Defendi V. Human lymphoblastoid lines from lymph node and spleen. Cancer. 1968 Sep;22(3):517–524. doi: 10.1002/1097-0142(196809)22:3<517::aid-cncr2820220305>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  8. Olsson L., Kaplan H. S. Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5429–5431. doi: 10.1073/pnas.77.9.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sato K., Slesinski R. S., Littlefield J. W. Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts. Proc Natl Acad Sci U S A. 1972 May;69(5):1244–1248. doi: 10.1073/pnas.69.5.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES