Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Sep 1;156(3):810–821. doi: 10.1084/jem.156.3.810

Induction of neonatal tolerance to H-2k in B6 mice does not allow the emergence of T cells specific for H-2k plus vaccinia virus

PMCID: PMC2186790  PMID: 6980965

Abstract

Thymocytes and spleen cells from C57BL/6 mice (H-2b) neonatally tolerized to H-2k alloantigens do not generate an anti-vaccinia response restricted to H-2Kk when adoptively transferred to appropriate irradiated hosts. This is in sharp contrast to the case for negatively selected C57BL/6 spleen cells acutely depleted of alloreactivity. No evidence for suppression was found in cell mixture experiments. We have shown elsewhere that our neonatally tolerized animals have a centrally induced delection-type tolerance in the absence of obvious suppression.2 We now suggest that in the neonatally tolerized mouse, chronic, central delection of anti-H-2k clones during early T cell ontogeny eliminates the major source of cells able to give rise, via somatic mutation and expansion, to anti-H-2Kk + vaccinia specific cytotoxic T lymphocyte precursors (CTL-P) in the adult. A similar mechanism may operate in the (k + b) leads to b chimera; however, the presence of H-2kxb accessory and presenting cells may permit the eventual generation (via cross-stimulation) of an H-2k-restricted vaccinia-specific repertoire. This would account for our observation of such "aberrant recognition" CTL-P emerging in the spleens of older (k x b) leads to b chimeras.

Full Text

The Full Text of this article is available as a PDF (899.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennink J. R., Doherty P. C. Reciprocal stimulation of negatively selected high-responder and low-responder T cells in virus-infected recipients. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3482–3485. doi: 10.1073/pnas.76.7.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennink J. R., Doherty P. C. T-cell populations specifically depleted of alloreactive potential cannot be induced to lyse H-2-different virus-infected target cells. J Exp Med. 1978 Jul 1;148(1):128–135. doi: 10.1084/jem.148.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennink J. R., Doherty P. C. Thymocytes can be stimulated to give a strong vaccinia virus-immune cytotoxic T lymphocyte response. J Immunol Methods. 1981;43(1):79–85. doi: 10.1016/0022-1759(81)90038-7. [DOI] [PubMed] [Google Scholar]
  4. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  5. Burakoff S. J., Finberg R., Glimcher L., Lemonnier F., Benacerraf B., Cantor H. The biologic significance of alloreactivity. The ontogeny of T-cell sets specific for alloantigens or modified self antigens. J Exp Med. 1978 Nov 1;148(5):1414–1422. doi: 10.1084/jem.148.5.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doherty P. C., Bennink J. C. Vaccinia-specific cytotoxic T-cell responses in the context of H-2 antigens not encountered in thymus may reflect aberrant recognition of a virus-H-2 complex. J Exp Med. 1979 Jan 1;149(1):150–157. doi: 10.1084/jem.149.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doherty P. C., Bennink J. R. An examination of MHC restriction in the context of a minimal clonal abortion model for self tolerance. Scand J Immunol. 1980;12(4):271–280. doi: 10.1111/j.1365-3083.1980.tb00067.x. [DOI] [PubMed] [Google Scholar]
  8. Doherty P. C., Bennink J. R. Patterns of virus-immune T-cell responsiveness. Comparison of (H-2k X H-2b) leads to H-2b radiation chimeras and negatively selected H-2b lymphocytes. J Exp Med. 1979 Nov 1;150(5):1187–1194. doi: 10.1084/jem.150.5.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doherty P. C., Korngold R., Schwartz D. H., Bennink J. R. Development and loss of virus-specific thymic competence in bone marrow radiation chimeras and normal mice. Immunol Rev. 1981;58:37–72. doi: 10.1111/j.1600-065x.1981.tb00349.x. [DOI] [PubMed] [Google Scholar]
  10. Finberg R., Burakoff S. J., Cantor H., Benacerraf B. Biological significance of alloreactivity: T cells stimulated by Sendai virus-coated syngeneic cells specifically lyse allogeneic target cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5145–5149. doi: 10.1073/pnas.75.10.5145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forman J., Streilein J. W. T cells recognize minor histocompatibility antigens on H-2 allogeneic cells. J Exp Med. 1979 Oct 1;150(4):1001–1007. doi: 10.1084/jem.150.4.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Groczynski R. M., Macrae S., Till J. E. Analysis of mechanisms of maintenance of neonatally induced tolerance to foreign alloantigens. Scand J Immunol. 1978;7(6):453–465. doi: 10.1111/j.1365-3083.1978.tb00478.x. [DOI] [PubMed] [Google Scholar]
  13. Janeway C. A., Jr, Murphy P. D., Kemp J., Wigzell H. T cells specific for hapten-modified self are precommitted for self major histocompatibility complex antigens before encounter with the hapten. J Exp Med. 1978 Apr 1;147(4):1065–1077. doi: 10.1084/jem.147.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kindred B. Functional activity of T cells which differentiate from nude mouse precursors in a congenic or allogeneic thymus graft. Immunol Rev. 1978;42:60–75. doi: 10.1111/j.1600-065x.1978.tb00258.x. [DOI] [PubMed] [Google Scholar]
  15. Korngold R., Doherty P. C. Sequential analysis of the virus-immune responder characteristics of thymocytes from F1 leads to parent radiation chimeras. Thymus. 1982 May;4(3):119–133. [PubMed] [Google Scholar]
  16. Kruisbeek A. M., Sharrow S. O., Mathieson B. J., Singer A. The H-2 phenotype of the thymus dictates the self-specificity expressed by thymic but not splenic cytotoxic T lymphocyte precursors in thymus-engrafted nude mice. J Immunol. 1981 Nov;127(5):2168–2176. [PubMed] [Google Scholar]
  17. Lafferty K., Ryan M., Misko I. An improved system for the assay of stimulation in mouse mixed leucocyte cultures. J Immunol Methods. 1974 Mar;4(2):263–273. doi: 10.1016/0022-1759(74)90069-6. [DOI] [PubMed] [Google Scholar]
  18. Lubaroff D. M., Silvers W. K. Importance of chimerism in maintaining tolerance of skin allografts in mice. J Immunol. 1973 Jul;111(1):65–71. [PubMed] [Google Scholar]
  19. Miller J. F. Influence of the major histocompatibility complex on T-cell activation. Adv Cancer Res. 1979;29:1–44. doi: 10.1016/s0065-230x(08)60845-3. [DOI] [PubMed] [Google Scholar]
  20. Müllbacher A. Neonatal tolerance to alloantigens alters major histocompatibility complex-restricted response patterns. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7689–7691. doi: 10.1073/pnas.78.12.7689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nossal G. J., Pike B. L. Functional clonal deletion in immunological tolerance to major histocompatibility complex antigens. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3844–3847. doi: 10.1073/pnas.78.6.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stutman O. Intrathymic and extrathymic T cell maturation. Immunol Rev. 1978;42:138–184. doi: 10.1111/j.1600-065x.1978.tb00261.x. [DOI] [PubMed] [Google Scholar]
  23. Thomas D. W., Shevach E. M. Nature of the antigenic complex recognized by T lymphocytes: specific sensitization by antigens associated with allogeneic macrophages. Proc Natl Acad Sci U S A. 1977 May;74(5):2104–2108. doi: 10.1073/pnas.74.5.2104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Waldmann H., Pope H., Brent L., Bighouse K. Influence of the major histocompatibility complex on lymphocyte interactions in antibody formation. Nature. 1978 Jul 13;274(5667):166–168. doi: 10.1038/274166a0. [DOI] [PubMed] [Google Scholar]
  25. Wilson D. B., Lindahl K. F., Wilson D. H., Sprent J. The generation of killer cells to trinitrophenyl-modified allogeneic targets by lymphocyte populations negatively selected to strong alloantigens. J Exp Med. 1977 Aug 1;146(2):361–367. doi: 10.1084/jem.146.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zinkernagel R. M., Althage A., Waterfield E., Kindred B., Welsh R. M., Callahan G., Pincetl P. Restriction specificities, alloreactivity, and allotolerance expressed by T cells from nude mice reconstituted with H-2-compatible or -incompatible thymus grafts. J Exp Med. 1980 Feb 1;151(2):376–399. doi: 10.1084/jem.151.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Streilein J. W., Klein J. The lymphoreticular system in triggering virus plus self-specific cytotoxic T cells: evidence for T help. J Exp Med. 1978 Mar 1;147(3):897–911. doi: 10.1084/jem.147.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES