Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Oct 1;156(4):945–961. doi: 10.1084/jem.156.4.945

Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells

PMCID: PMC2186804  PMID: 7153714

Abstract

Each of 11 tumors tested produced a factor that markedly suppressed the ability of macrophages to release H2O2 or O.2- in response to phorbol myristate acetate or zymosan. Four of seven normal cell types produced a similar activity, which was 3.5-7 times lower in titer than that in tumor cell-conditioned medium (TCM), and which was much more rapidly reversible in its effects. TCM caused 50% inhibition of H2O2 release when it was present in the medium for 48 h at a concentration of 13%, or when 100% TCM was present in the medium for 18 h. The H2O2-releasing capacity of macrophages incubated in TCM only returned to control levels by 6 d after its removal. TCM prevented augmentation of H2O2- releasing capacity by lymphokines. The titer of suppressive activity in TCM depended on both the concentration of tumor cells and the duration of their incubation. TCM did not augment the activity of catalase, myeloperoxidase, glutathione peroxidase, or glutathione reductase or the content of glutathione within macrophages, suggesting that decreased synthesis rather than increased catabolism was responsible for reduced secretion of H2O2. Suppression of the release of H2O2 or O.2- by TCM appeared to be a relatively specific effect, in that TCM increased macrophage spreading and adherence to glass while exerting little influence on rates of phagocytosis, synthesis of protein, or secretion of lysozyme, plasminogen activator, or arachidonic acid and its metabolites. Thus, tumor cells and some normal cells can secrete a factor that selectively deactivates macrophage oxidative metabolism.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beers W. H., Strickland S., Reich E. Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell. 1975 Nov;6(3):387–394. doi: 10.1016/0092-8674(75)90188-9. [DOI] [PubMed] [Google Scholar]
  3. Bernstein I. D., Zbar B., Rapp H. J. Impaired inflammatory response in tumor-bearing guinea pigs. J Natl Cancer Inst. 1972 Dec;49(6):1641–1647. doi: 10.1093/jnci/49.6.1641. [DOI] [PubMed] [Google Scholar]
  4. Birke C., Peter H. H., Langenberg U., Müller-Hermes W. J., Peters J. H., Heitmann J., Leibold W., Dallügge H., Krapf E., Kirchner H. Mycoplasma contamination in human tumor cell lines: effect on interferon induction and susceptibility to natural killing. J Immunol. 1981 Jul;127(1):94–98. [PubMed] [Google Scholar]
  5. Boetcher D. A., Leonard E. J. Abnormal monocyte chemotactic response in cancer patients. J Natl Cancer Inst. 1974 Apr;52(4):1091–1099. doi: 10.1093/jnci/52.4.1091. [DOI] [PubMed] [Google Scholar]
  6. Buchmüller Y., Mauel J. Studies on the mechanisms of macrophage activation: possible involvement of oxygen metabolites in killing of Leishmania enrietti by activated mouse macrophages. J Reticuloendothel Soc. 1981 Mar;29(3):181–192. [PubMed] [Google Scholar]
  7. Cheung H. T., Cantarow W. D., Sundharadas G. Tumoricidal activity of macrophages induced by lipopolysaccharide and its inhibition by a low molecular weight factor extracted from tumors. J Reticuloendothel Soc. 1979 Jul;26(1):21–30. [PubMed] [Google Scholar]
  8. Cianciolo G. J., Herberman R. B., Snyderman R. Depression of murine macrophage accumulation by low-molecular-weight derived from spontaneous mammary carcinomas. J Natl Cancer Inst. 1980 Oct;65(4):829–834. doi: 10.1093/jnci/65.4.829. [DOI] [PubMed] [Google Scholar]
  9. Cianciolo G., Hunter J., Silva J., Haskill J. S., Snyderman R. Inhibitors of monocyte responses to chemotaxins are present in human cancerous effusions and react with monoclonal antibodies to the P15(E) structural protein of retroviruses. J Clin Invest. 1981 Oct;68(4):831–844. doi: 10.1172/JCI110338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cohen M. S., Taffet S. M., Adams D. O. The relationship between competence for secretion of H2O2 and completion of tumor cytotoxicity by BCG-elicited murine macrophages. J Immunol. 1982 Apr;128(4):1781–1785. [PubMed] [Google Scholar]
  11. Drath D. B., Karnovsky M. L. Superoxide production by phagocytic leukocytes. J Exp Med. 1975 Jan 1;141(1):257–262. doi: 10.1084/jem.141.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dvorak H. F., Orenstein N. S., Carvalho A. C., Churchill W. H., Dvorak A. M., Galli S. J., Feder J., Bitzer A. M., Rypysc J., Giovinco P. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979 Jan;122(1):166–174. [PubMed] [Google Scholar]
  13. Eccles S. A., Alexander P. Sequestration of macrophages in growing tumours and its effect on the immunological capacity of the host. Br J Cancer. 1974 Jul;30(1):42–49. doi: 10.1038/bjc.1974.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Farram E., Nelson M., Nelson D. S. Macrophages and resistance to tumors. The effects of tumor cell products on monocytopoiesis. J Reticuloendothel Soc. 1981 Oct;30(4):259–269. [PubMed] [Google Scholar]
  15. Fauve R. M., Hevin B., Jacob H., Gaillard J. A., Jacob F. Antiinflammatory effects of murine malignant cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4052–4056. doi: 10.1073/pnas.71.10.4052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gemsa D., Kramer W., Napierski I., Bärlin E., Till G., Resch K. Potentiation of macrophage tumor cytostasis by tumor-induced ascites. J Immunol. 1981 Jun;126(6):2143–2150. [PubMed] [Google Scholar]
  17. Gordon S., Todd J., Cohn Z. A. In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med. 1974 May 1;139(5):1228–1248. doi: 10.1084/jem.139.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Himmelhoch S. R., Evans W. H., Mage M. G., Peterson E. A. Purification of myeloperoxidases from the bone marrow of the guinea pig. Biochemistry. 1969 Mar;8(3):914–921. doi: 10.1021/bi00831a022. [DOI] [PubMed] [Google Scholar]
  19. Hull R. N., Cherry W. R., Weaver G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976 Oct;12(10):670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
  20. Humes J. L., Burger S., Galavage M., Kuehl F. A., Jr, Wightman P. D., Dahlgren M. E., Davies P., Bonney R. J. The diminished production of arachidonic acid oxygenation products by elicited mouse peritoneal macrophages: possible mechanisms. J Immunol. 1980 May;124(5):2110–2116. [PubMed] [Google Scholar]
  21. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Levine L., Hinkle P. M., Voelkel E. F., Tashjian A. H., Jr Prostaglandin production by mouse fibrosarcoma cells in culture: inhibition by indomethacin and aspirin. Biochem Biophys Res Commun. 1972 May 26;47(4):888–896. doi: 10.1016/0006-291x(72)90576-1. [DOI] [PubMed] [Google Scholar]
  24. Lutz H. U., Wipf G. Naturally occurring autoantibodies to skeletal proteins from human red blood cells. J Immunol. 1982 Apr;128(4):1695–1699. [PubMed] [Google Scholar]
  25. Maderazo E. G., Anton T. F., Ward P. A. Serum-associated inhibition of leukotaxis in humans with cancer. Clin Immunol Immunopathol. 1978 Feb;9(2):166–176. doi: 10.1016/0090-1229(78)90068-5. [DOI] [PubMed] [Google Scholar]
  26. Martin W. J., 2nd, Gadek J. E., Hunninghake G. W., Crystal R. G. Oxidant injury of lung parenchymal cells. J Clin Invest. 1981 Nov;68(5):1277–1288. doi: 10.1172/JCI110374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meltzer M. S., Stevenson M. M. Macrophage function in tumor-bearing mice: tumoricidal and chemotactic responses of macrophages activated by infection with Mycobacterium bovis, strain BCG. J Immunol. 1977 Jun;118(6):2176–2181. [PubMed] [Google Scholar]
  28. Metzger Z., Hoffeld J. T., Oppenheim J. J. Regulation by PGE2 of the production of oxygen intermediates by LPS-activated macrophages. J Immunol. 1981 Sep;127(3):1109–1113. [PubMed] [Google Scholar]
  29. Murray H. W., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med. 1980 Dec 1;152(6):1596–1609. doi: 10.1084/jem.152.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Musson R. A., McPhail L. C., Shafran H., Johnston R. B., Jr Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion: studies with cells from normals and patients with chronic granulomatous disease. J Reticuloendothel Soc. 1982 Mar;31(3):261–266. [PubMed] [Google Scholar]
  31. Nakagawara A., Nathan C. F., Cohn Z. A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest. 1981 Nov;68(5):1243–1252. doi: 10.1172/JCI110370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nathan C. F., Arrick B. A., Murray H. W., DeSantis N. M., Cohn Z. A. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981 Apr 1;153(4):766–782. doi: 10.1084/jem.153.4.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nathan C. F., Klebanoff S. J. Augmentation of spontaneous macrophage-mediated cytolysis by eosinophil peroxidase. J Exp Med. 1982 May 1;155(5):1291–1308. doi: 10.1084/jem.155.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nathan C. F., Remold H. G., David J. R. Characterization of a lymphocyte factor which alters macrophage functions. J Exp Med. 1973 Feb 1;137(2):275–290. doi: 10.1084/jem.137.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nathan C. F., Terry W. D. Decreased phagocytosis by peritoneal macrophages from BCG-treated mice: induction of the phagocytic defect in normal macrophages with BCG in vitro. Cell Immunol. 1977 Mar 15;29(2):295–311. doi: 10.1016/0008-8749(77)90324-0. [DOI] [PubMed] [Google Scholar]
  39. Nathan C., Brukner L., Kaplan G., Unkeless J., Cohn Z. Role of activated macrophages in antibody-dependent lysis of tumor cells. J Exp Med. 1980 Jul 1;152(1):183–197. doi: 10.1084/jem.152.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nathan C., Cohn Z. Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J Exp Med. 1980 Jul 1;152(1):198–208. doi: 10.1084/jem.152.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nelson D. S., Nelson M., Farram E., Inoue Y. Cancer and subversion of host defences. Aust J Exp Biol Med Sci. 1981 Jun;59(Pt 3):229–262. doi: 10.1038/icb.1981.18. [DOI] [PubMed] [Google Scholar]
  43. Nelson M., Nelson D. S. Macrophages and resistance to tumors. IV. Influence of age on susceptibility of mice to anti-inflammatory and antimacrophage effects of tumor cell products. J Natl Cancer Inst. 1980 Oct;65(4):781–789. doi: 10.1093/jnci/65.4.781. [DOI] [PubMed] [Google Scholar]
  44. Nelson M., Nelson D. S. Macrophages and resistance to tumours. I. Inhibition of delayed-type hypersensitivity reactions by tumour cells and by soluble prducts affecting macrophages. Immunology. 1978 Feb;34(2):277–290. [PMC free article] [PubMed] [Google Scholar]
  45. Normann S. J., Cornelius J. Concurrent depression of tumor macrophage infiltration and systemic inflammation by progressive cancer growth. Cancer Res. 1978 Oct;38(10):3453–3459. [PubMed] [Google Scholar]
  46. Normann S. J., Sorkin E. Inhibition of macrophage chemotaxis by neoplastic and other rapidly proliferating cells in vitro. Cancer Res. 1977 Mar;37(3):705–711. [PubMed] [Google Scholar]
  47. North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
  48. Olstad R., Gaudernack G., Kaplan G., Seljelid R. T- and B-cell-independent activation of syngeneic macrophages by murine sarcoma cells. Cancer Res. 1980 Jun;40(6):2054–2060. [PubMed] [Google Scholar]
  49. Otu A. A., Russell R. J., Wilkinson P. C., White R. G. Alterations of mononuclear phagocyte function induced by Lewis lung carcinoma in C57BL mice. Br J Cancer. 1977 Sep;36(3):330–340. doi: 10.1038/bjc.1977.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  51. Rhodes J., Bishop M., Benfield J. Tumor surveillance: how tumors may resist macrophage-mediated host defense. Science. 1979 Jan 12;203(4376):179–182. doi: 10.1126/science.758686. [DOI] [PubMed] [Google Scholar]
  52. Roos D., Weening R. S., Voetman A. A., van Schaik M. L., Bot A. A., Meerhof L. J., Loos J. A. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979 May;53(5):851–866. [PubMed] [Google Scholar]
  53. Rowson K. E., Mahy B. W. Lactic dehydrogenase virus. Virol Monogr. 1975;(13):1–121. doi: 10.1007/978-3-7091-8378-6_1. [DOI] [PubMed] [Google Scholar]
  54. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Scott W. A., Pawlowski N. A., Murray H. W., Andreach M., Zrike J., Cohn Z. A. Regulation of arachidonic acid metabolism by macrophage activation. J Exp Med. 1982 Apr 1;155(4):1148–1160. doi: 10.1084/jem.155.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scott W. A., Zrike J. M., Hamill A. L., Kempe J., Cohn Z. A. Regulation of arachidonic acid metabolites in macrophages. J Exp Med. 1980 Aug 1;152(2):324–335. doi: 10.1084/jem.152.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Simon R. H., Scoggin C. H., Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J Biol Chem. 1981 Jul 25;256(14):7181–7186. [PubMed] [Google Scholar]
  58. Snyderman R., Pike M. C., Blaylock B. L., Weinstein P. Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J Immunol. 1976 Mar;116(3):585–589. [PubMed] [Google Scholar]
  59. Spitalny G. L. Suppression of bactericidal activity of macrophages in ascites tumors. J Reticuloendothel Soc. 1980 Sep;28(3):223–235. [PubMed] [Google Scholar]
  60. Stevenson M. M., Rees J. C., Meltzer M. S. Macrophage function in tumor-bearing mice: evidence for lactic dehydrogenase-elevating virus-associated changes. J Immunol. 1980 Jun;124(6):2892–2899. [PubMed] [Google Scholar]
  61. Thomas E. L., Fishman M. Hydrogen peroxide release by rat peritoneal macrophages in the presence and absence of tumor cells. Arch Biochem Biophys. 1982 May;215(2):355–366. doi: 10.1016/0003-9861(82)90096-0. [DOI] [PubMed] [Google Scholar]
  62. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  63. Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES