Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Nov 1;156(5):1516–1527. doi: 10.1084/jem.156.5.1516

Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation

PMCID: PMC2186832  PMID: 7130905

Abstract

Compared with normal littermates, the op/op mice had very few macrophages in the peritoneal cavity and severely reduced numbers of monocytes in the peripheral blood. Moreover, osteopetrotic animals demonstrated an altered distribution of hemopoietic tissue with a 10- fold decrease in the number of marrow cells. Liver hemopoiesis persisted in 4-wk-old mice as evidenced by the presence of hemopoietic stem cells (HSC). Moreover, the concentration of HSC was decreased in marrow and increased in the spleen of op/op mice. In spite of the paucity of cells of monocyte-macrophage lineage in vivo, progenitor cells from hemopoietic tissues of op/op mice formed increased numbers of monocyte-macrophage colonies in vitro in the presence of exogenous colony-stimulating activity (CSA). The source of this critical CSA was a medium conditioned by stromal fibroblastoid colonies formed in vitro by normal marrow cells. Therefore, these data suggest that op/op mice possess normal monocyte-macrophage-osteoclast progenitor cells but these cells are unable to fully differentiate in the op/op mouse microenvironment. In support of this, in cultures of stromal fibroblastoid colonies from op/op marrow or spleen, the concomitant growth of macrophages, normally very dense, was drastically reduced. Moreover, transplantation of op/op spleen cells into lethally irradiated littermate recipients resulted in their hemopoietic reconstitution without signs of macrophage defect. Thus, the op/op splenic cells do not transfer the disease and are capable of normal differentiation in normal in vivo environment. These observations support the hypothesis that the defect in op/op mice is a result of the failure of hemopoietic stromal fibroblastoid cells to release sufficient amounts of CSA necessary for normal differentiation of cells of the monocyte-macrophage lineage.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
  2. Ballet J. J., Griscelli C., Coutris C., Milhaud G., Maroteaux P. Bone-marrow transplantation in osteopetrosis. Lancet. 1977 Nov 26;2(8048):1137–1137. doi: 10.1016/s0140-6736(77)90592-x. [DOI] [PubMed] [Google Scholar]
  3. Chan S. H., Metcalf D. Local and systemic control of granuloctic and macrophage progenitor cell regeneration after irradiation. Cell Tissue Kinet. 1973 Mar;6(2):185–197. doi: 10.1111/j.1365-2184.1973.tb01607.x. [DOI] [PubMed] [Google Scholar]
  4. Chan S. H., Metcalf D. Local production of colony-stimulating factor within the bone marrow: role of nonhematopoietic cells. Blood. 1972 Nov;40(5):646–653. [PubMed] [Google Scholar]
  5. Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
  6. Eaves A. C., Bruce W. R. In vitro production of colony-stimulating activity. I. Exposure of mouse peritoneal cells to endotoxin. Cell Tissue Kinet. 1974 Jan;7(1):19–30. doi: 10.1111/j.1365-2184.1974.tb00395.x. [DOI] [PubMed] [Google Scholar]
  7. Friedenstein A. J., Chailakhyan R. K., Latsinik N. V., Panasyuk A. F., Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974 Apr;17(4):331–340. doi: 10.1097/00007890-197404000-00001. [DOI] [PubMed] [Google Scholar]
  8. Friedenstein A. J. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–359. doi: 10.1016/s0074-7696(08)60092-3. [DOI] [PubMed] [Google Scholar]
  9. Goud T. J., Schotte C., van Furth R. Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. J Exp Med. 1975 Nov 1;142(5):1180–1199. doi: 10.1084/jem.142.5.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goud T. J., van Furth R. Proliferative characteristics of monoblasts grown in vitro. J Exp Med. 1975 Nov 1;142(5):1200–1217. doi: 10.1084/jem.142.5.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
  12. Loutit J. F., Nisbet N. W. Resorption of bone. Lancet. 1979 Jul 7;2(8132):26–27. doi: 10.1016/s0140-6736(79)90186-7. [DOI] [PubMed] [Google Scholar]
  13. Marks S. C., Jr, Lane P. W. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered. 1976 Jan-Feb;67(1):11–18. doi: 10.1093/oxfordjournals.jhered.a108657. [DOI] [PubMed] [Google Scholar]
  14. Marks S. C., Jr Osteopetrosis in the IA rat cured by spleen cells from a normal littermate. Am J Anat. 1976 Jul;146(3):331–338. doi: 10.1002/aja.1001460308. [DOI] [PubMed] [Google Scholar]
  15. Marks S. C., Jr Osteopetrosis in the toothless (t1) rat: presence of osteoclasts but failure to respond to parathyroid extract or to be cured by infusion of spleen or bone marrow cells from normal littermates. Am J Anat. 1977 Jun;149(2):289–297. doi: 10.1002/aja.1001490212. [DOI] [PubMed] [Google Scholar]
  16. McCulloch E. A., Siminovitch L., Till J. E., Russell E. S., Bernstein S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood. 1965 Oct;26(4):399–410. [PubMed] [Google Scholar]
  17. Milhaud G., Labat M. L., Graf B., Thillard M. J. Guérison de l'ostéopétrose congénitale du rat "op" par greffe de thymus. C R Acad Sci Hebd Seances Acad Sci D. 1976 Sep 20;283(5):531–533. [PubMed] [Google Scholar]
  18. Milhaud G., Labat M. L. Osteopetrosis reconsidered as a curable immune disorder. Biomedicine. 1979 Jun;30(2):71–75. [PubMed] [Google Scholar]
  19. Morse B. S., Giuliani D., Soremekun M., DiFino S., Giuliani E. R. Adaptation of hemopoietic tissue resulting from estrone-induced osteosclerosis in mice. Cell Tissue Kinet. 1974 Mar;7(2):113–123. doi: 10.1111/j.1365-2184.1974.tb00404.x. [DOI] [PubMed] [Google Scholar]
  20. Mundy G. R., Varani J., Orr W., Gondek M. D., Ward P. A. Resorbing bone is chemotactic for monocytes. Nature. 1978 Sep 14;275(5676):132–135. doi: 10.1038/275132a0. [DOI] [PubMed] [Google Scholar]
  21. Owen M. Histogenesis of bone cells. Calcif Tissue Res. 1978 Aug 18;25(3):205–207. doi: 10.1007/BF02010770. [DOI] [PubMed] [Google Scholar]
  22. Parker J. W., Metcalf D. Production of colony-stimulating factor in mitogen-stimulated lymphocyte cultures. J Immunol. 1974 Feb;112(2):502–510. [PubMed] [Google Scholar]
  23. Sharkis S. J., Wiktor-Jedrzejczak W., Ahmed A., Santos G. W., McKee A., Sell K. W. Antitheta-sensitive regulatory cell (TSRC) and hematopoiesis: regulation of differentiation of transplanted stem cells in W/Wv anemic and normal mice. Blood. 1978 Oct;52(4):802–817. [PubMed] [Google Scholar]
  24. Tavassoli M. Studies on hemopoietic microenvironments. Report of a workshop held in La Jolla,, California, August 8-9, 1974. Exp Hematol. 1975 Aug;3(4):213–226. [PubMed] [Google Scholar]
  25. Teitelbaum S. L., Stewart C. C., Kahn A. J. Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int. 1979 Jul 3;27(3):255–261. doi: 10.1007/BF02441194. [DOI] [PubMed] [Google Scholar]
  26. Walker D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975 Nov 21;190(4216):784–785. doi: 10.1126/science.1105786. [DOI] [PubMed] [Google Scholar]
  27. Walker D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975 Sep 1;142(3):651–663. doi: 10.1084/jem.142.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker D. G. Spleen cells transmit osteopetrosis in mice. Science. 1975 Nov 21;190(4216):785–787. doi: 10.1126/science.1198094. [DOI] [PubMed] [Google Scholar]
  29. Wiktor-Jedrzejczak W., Ahmed A., Szczylik C. Conditions of adherent cell growth from murine bone marrow in liquid cultures, and partial characterization of function. Exp Hematol. 1981 Sep;9(8):835–848. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES