Abstract
Compared with normal littermates, the op/op mice had very few macrophages in the peritoneal cavity and severely reduced numbers of monocytes in the peripheral blood. Moreover, osteopetrotic animals demonstrated an altered distribution of hemopoietic tissue with a 10- fold decrease in the number of marrow cells. Liver hemopoiesis persisted in 4-wk-old mice as evidenced by the presence of hemopoietic stem cells (HSC). Moreover, the concentration of HSC was decreased in marrow and increased in the spleen of op/op mice. In spite of the paucity of cells of monocyte-macrophage lineage in vivo, progenitor cells from hemopoietic tissues of op/op mice formed increased numbers of monocyte-macrophage colonies in vitro in the presence of exogenous colony-stimulating activity (CSA). The source of this critical CSA was a medium conditioned by stromal fibroblastoid colonies formed in vitro by normal marrow cells. Therefore, these data suggest that op/op mice possess normal monocyte-macrophage-osteoclast progenitor cells but these cells are unable to fully differentiate in the op/op mouse microenvironment. In support of this, in cultures of stromal fibroblastoid colonies from op/op marrow or spleen, the concomitant growth of macrophages, normally very dense, was drastically reduced. Moreover, transplantation of op/op spleen cells into lethally irradiated littermate recipients resulted in their hemopoietic reconstitution without signs of macrophage defect. Thus, the op/op splenic cells do not transfer the disease and are capable of normal differentiation in normal in vivo environment. These observations support the hypothesis that the defect in op/op mice is a result of the failure of hemopoietic stromal fibroblastoid cells to release sufficient amounts of CSA necessary for normal differentiation of cells of the monocyte-macrophage lineage.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
- Ballet J. J., Griscelli C., Coutris C., Milhaud G., Maroteaux P. Bone-marrow transplantation in osteopetrosis. Lancet. 1977 Nov 26;2(8048):1137–1137. doi: 10.1016/s0140-6736(77)90592-x. [DOI] [PubMed] [Google Scholar]
- Chan S. H., Metcalf D. Local and systemic control of granuloctic and macrophage progenitor cell regeneration after irradiation. Cell Tissue Kinet. 1973 Mar;6(2):185–197. doi: 10.1111/j.1365-2184.1973.tb01607.x. [DOI] [PubMed] [Google Scholar]
- Chan S. H., Metcalf D. Local production of colony-stimulating factor within the bone marrow: role of nonhematopoietic cells. Blood. 1972 Nov;40(5):646–653. [PubMed] [Google Scholar]
- Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
- Eaves A. C., Bruce W. R. In vitro production of colony-stimulating activity. I. Exposure of mouse peritoneal cells to endotoxin. Cell Tissue Kinet. 1974 Jan;7(1):19–30. doi: 10.1111/j.1365-2184.1974.tb00395.x. [DOI] [PubMed] [Google Scholar]
- Friedenstein A. J., Chailakhyan R. K., Latsinik N. V., Panasyuk A. F., Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974 Apr;17(4):331–340. doi: 10.1097/00007890-197404000-00001. [DOI] [PubMed] [Google Scholar]
- Friedenstein A. J. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–359. doi: 10.1016/s0074-7696(08)60092-3. [DOI] [PubMed] [Google Scholar]
- Goud T. J., Schotte C., van Furth R. Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. J Exp Med. 1975 Nov 1;142(5):1180–1199. doi: 10.1084/jem.142.5.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goud T. J., van Furth R. Proliferative characteristics of monoblasts grown in vitro. J Exp Med. 1975 Nov 1;142(5):1200–1217. doi: 10.1084/jem.142.5.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
- Loutit J. F., Nisbet N. W. Resorption of bone. Lancet. 1979 Jul 7;2(8132):26–27. doi: 10.1016/s0140-6736(79)90186-7. [DOI] [PubMed] [Google Scholar]
- Marks S. C., Jr, Lane P. W. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered. 1976 Jan-Feb;67(1):11–18. doi: 10.1093/oxfordjournals.jhered.a108657. [DOI] [PubMed] [Google Scholar]
- Marks S. C., Jr Osteopetrosis in the IA rat cured by spleen cells from a normal littermate. Am J Anat. 1976 Jul;146(3):331–338. doi: 10.1002/aja.1001460308. [DOI] [PubMed] [Google Scholar]
- Marks S. C., Jr Osteopetrosis in the toothless (t1) rat: presence of osteoclasts but failure to respond to parathyroid extract or to be cured by infusion of spleen or bone marrow cells from normal littermates. Am J Anat. 1977 Jun;149(2):289–297. doi: 10.1002/aja.1001490212. [DOI] [PubMed] [Google Scholar]
- McCulloch E. A., Siminovitch L., Till J. E., Russell E. S., Bernstein S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood. 1965 Oct;26(4):399–410. [PubMed] [Google Scholar]
- Milhaud G., Labat M. L., Graf B., Thillard M. J. Guérison de l'ostéopétrose congénitale du rat "op" par greffe de thymus. C R Acad Sci Hebd Seances Acad Sci D. 1976 Sep 20;283(5):531–533. [PubMed] [Google Scholar]
- Milhaud G., Labat M. L. Osteopetrosis reconsidered as a curable immune disorder. Biomedicine. 1979 Jun;30(2):71–75. [PubMed] [Google Scholar]
- Morse B. S., Giuliani D., Soremekun M., DiFino S., Giuliani E. R. Adaptation of hemopoietic tissue resulting from estrone-induced osteosclerosis in mice. Cell Tissue Kinet. 1974 Mar;7(2):113–123. doi: 10.1111/j.1365-2184.1974.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Mundy G. R., Varani J., Orr W., Gondek M. D., Ward P. A. Resorbing bone is chemotactic for monocytes. Nature. 1978 Sep 14;275(5676):132–135. doi: 10.1038/275132a0. [DOI] [PubMed] [Google Scholar]
- Owen M. Histogenesis of bone cells. Calcif Tissue Res. 1978 Aug 18;25(3):205–207. doi: 10.1007/BF02010770. [DOI] [PubMed] [Google Scholar]
- Parker J. W., Metcalf D. Production of colony-stimulating factor in mitogen-stimulated lymphocyte cultures. J Immunol. 1974 Feb;112(2):502–510. [PubMed] [Google Scholar]
- Sharkis S. J., Wiktor-Jedrzejczak W., Ahmed A., Santos G. W., McKee A., Sell K. W. Antitheta-sensitive regulatory cell (TSRC) and hematopoiesis: regulation of differentiation of transplanted stem cells in W/Wv anemic and normal mice. Blood. 1978 Oct;52(4):802–817. [PubMed] [Google Scholar]
- Tavassoli M. Studies on hemopoietic microenvironments. Report of a workshop held in La Jolla,, California, August 8-9, 1974. Exp Hematol. 1975 Aug;3(4):213–226. [PubMed] [Google Scholar]
- Teitelbaum S. L., Stewart C. C., Kahn A. J. Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int. 1979 Jul 3;27(3):255–261. doi: 10.1007/BF02441194. [DOI] [PubMed] [Google Scholar]
- Walker D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975 Nov 21;190(4216):784–785. doi: 10.1126/science.1105786. [DOI] [PubMed] [Google Scholar]
- Walker D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975 Sep 1;142(3):651–663. doi: 10.1084/jem.142.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker D. G. Spleen cells transmit osteopetrosis in mice. Science. 1975 Nov 21;190(4216):785–787. doi: 10.1126/science.1198094. [DOI] [PubMed] [Google Scholar]
- Wiktor-Jedrzejczak W., Ahmed A., Szczylik C. Conditions of adherent cell growth from murine bone marrow in liquid cultures, and partial characterization of function. Exp Hematol. 1981 Sep;9(8):835–848. [PubMed] [Google Scholar]