Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Nov 1;156(5):1486–1501. doi: 10.1084/jem.156.5.1486

Genetic control of immune response to myoglobin. Ir gene function in genetic restriction between T and B lymphocytes

PMCID: PMC2186840  PMID: 6813419

Abstract

We studied the genetic restrictions on the interaction between T cells, B cells, and antigen-presenting cells (APC) involved in the H-2-linked Ir gene control of the in vitro secondary antibody response to sperm whale myoglobin (Mb) in mice. The B cells in this study were specific for Mb itself, rather than for a hapten unrelated to the Ir gene control, as in many previous studies. Low responder mice immunized in vivo with Mb bound to an immunogenic carrier, fowl gamma globulin (F gamma G), produced B cells competent to secrete anti-Mb antibodies in vitro if they received F gamma G-specific T cell help. However, (high- responder X low responder) F1 T cells from Mb-immune mice did not help these primed low responder (H-2k or H-2b) B cells in vitro, even in the presence of various numbers of F1 APC that were demonstrated to be component to reconstitute the response of spleen cells depleted by APC. Similar results were obtained with B6 leads to B6D2F1 radiation bone marrow chimeras. Genotypic low responder (H-2b) T cells from these mice helped Mb-primed B6D2F1B cells plus APC, but did not help syngeneic chimeric H-2b B cells, even in the presence of F1 APC. In contrast, we could not detect any Ir restriction on APC function during these in vitro secondary responses. Moreover, in the preceding paper, we found that low responder mice neonatally tolerized to higher responder H-2 had competent Mb-specific helper T cells capable of helping high responder but not low responder B cells and APC. Therefore, although function Mb-specific T cells and B cells both exist in low responder mice, the Ir gene defect is a manifestation of the failure of syngeneic collaboration between these two cell types. This genetic restriction on the interaction between T cells and B cells is consistent with the additional new finding that Lyb-5-negative B cells are a major participant in ths vitro secondary response because it is this Lyb-5- negative subpopulation of B cells that have recently been shown to require genetically restricted help. The Ir gene defect behaves operationally as a failure of low responder B cells to receive help from any source of Mb-specific T cells either high responder, low responder, or F1. The possible additional role of T cell-APC interactions, either during primary immunization in vivo or in the secondary culture is discussed.

Full Text

The Full Text of this article is available as a PDF (899.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Scher I., Sharrow S. O., Smith A. H., Paul W. E., Sachs D. H., Sell K. W. B-lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B-lymphocyte differentiation alloantigens. J Exp Med. 1977 Jan 1;145(1):101–110. doi: 10.1084/jem.145.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson J., Schreier M. H., Melchers F. T-cell-dependent B-cell stimulation is H-2 restricted and antigen dependent only at the resting B-cell level. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1612–1616. doi: 10.1073/pnas.77.3.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asano Y., Singer A., Hodes R. J. Role of the major histocompatibility complex in T cell activation of B cell subpopulations. Major histocompatibility complex-restricted and -unrestricted B cell responses are mediated by distinct B cell subpopulations. J Exp Med. 1981 Oct 1;154(4):1100–1115. doi: 10.1084/jem.154.4.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  5. Berzofsky J. A. Genetic control of the immune response to mammalian myoglobins in mice I. More than one I-region gene in H-2 controls the antibody response. J Immunol. 1978 Feb;120(2):360–369. [PubMed] [Google Scholar]
  6. Berzofsky J. A., Richman L. K., Killion D. J. Distinct H-2-linked Ir genes control both antibody and T cell responses to different determinants on the same antigen, myoglobin. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4046–4050. doi: 10.1073/pnas.76.8.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green I., Paul W. E., Benacerraf B. The behavior of hapten-poly-L-lysine conjugates as complete antigens in genetic responder and as haptens in nonresponder guinea pigs. J Exp Med. 1966 May 1;123(5):859–879. doi: 10.1084/jem.123.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hodes R. J., Ahmann G. B., Hathcock K. S., Dickler H. B., Singer A. Cellular and genetic control of antibody responses in vitro. IV. Expression of Ia antigens on accessory cells required for responses to soluble antigens including a response under Ir gene control. J Immunol. 1978 Oct;121(4):1501–1509. [PubMed] [Google Scholar]
  9. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  10. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. II. Cellular requirements for the development of primary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1121–1132. doi: 10.1084/jem.138.5.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kappler J. W., Marrack P. The role of H-2-linked genes in helper T-cell function. I. In vitro expression in B cells of immune response genes controlling helper T-cell activity. J Exp Med. 1977 Dec 1;146(6):1748–1764. doi: 10.1084/jem.146.6.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz D. H., Hamaoka T., Dorf M. E., Maurer P. H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. IV. Involvement of the immune response (Ir) gene in the control of lymphocyte interactions in responses controlled by the gene. J Exp Med. 1973 Sep 1;138(3):734–739. doi: 10.1084/jem.138.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kohno Y., Berzofsky J. A. Genetic control of the immune response to myoglobin. V. Antibody production in vitro is macrophage and T cell-dependent and is under control of two determinant-specific Ir genes. J Immunol. 1982 Jun;128(6):2458–2464. [PubMed] [Google Scholar]
  14. Kohno Y., Berzofsky J. A. Genetic control of the immune response to myoglobins. Both low and high responder T cells tolerant to the other major histocompatibility complex help high but not low responder B cells. J Exp Med. 1982 Sep 1;156(3):791–809. doi: 10.1084/jem.156.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDevitt H. O. Genetic control of the antibody response. 3. Qualitative and quantitative characterization of the antibody response to (T,G)-A--L in CBA and C57 mice. J Immunol. 1968 Mar;100(3):485–492. [PubMed] [Google Scholar]
  16. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paul W. E., Benacerraf B. Functional specificity of thymus- dependent lymphocytes. Science. 1977 Mar 25;195(4284):1293–1300. doi: 10.1126/science.320663. [DOI] [PubMed] [Google Scholar]
  18. Pierce C. W., Kapp J. A. Suppressor T-cell activity in responder X nonresponder (C57BL/10 X DBA/1)F1 spleen cells responsive to L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med. 1978 Nov 1;148(5):1282–1291. doi: 10.1084/jem.148.5.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richman L. R., Strober W., Berzofsky J. A. Genetic control of the immune response to myoglobin. III. Determinant-specific, two Ir gene phenotype is regulated by the genotype of reconstituting Kupffer cells. J Immunol. 1980 Feb;124(2):619–625. [PubMed] [Google Scholar]
  20. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  21. Schroer J. A., Inman J. K., Thomas J. W., Rosenthal A. S. H-2-linked Ir gene control of antibody responses to insulin. I. Anti-insulin plaque-forming cell primary responses. J Immunol. 1979 Aug;123(2):670–675. [PubMed] [Google Scholar]
  22. Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. VIII. MHC restricted recognition of accessory cells, not B cells, by parent-specific subpopulations of normal F1 T helper cells. J Immunol. 1980 Mar;124(3):1079–1085. [PubMed] [Google Scholar]
  24. Singer A., Morrissey P. J., Hathcock K. S., Ahmed A., Scher I., Hodes R. J. Role of the major histocompatibility complex in T cell activation of B cell subpopulations Lyb-5+ and Lyb-5- B cell subpopulations differ in their requirement for major histocompatibility complex-restricted T cell recognition. J Exp Med. 1981 Aug 1;154(2):501–516. doi: 10.1084/jem.154.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sprent J. Restricted helper function of F1 hybrid T cells positively selected to heterologous erythrocytes in irradiated parental strain mice. I. Failure to collaborate with B cells of the opposite parental strain not associated with active suppression. J Exp Med. 1978 Apr 1;147(4):1142–1158. doi: 10.1084/jem.147.4.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Swain S. L., Dutton R. W. Negative allogeneic effects in vitro. I. Allogeneic T cells markedly suppress the secondary antibody-forming cell response. J Immunol. 1977 Jun;118(6):2262–2268. [PubMed] [Google Scholar]
  27. Yamashita U., Shevach E. M. The histocompatibility restrictions on macrophage T-helper cell interaction determine the histocompatibility restrictions on T-helper cell B-cell interaction. J Exp Med. 1978 Nov 1;148(5):1171–1185. doi: 10.1084/jem.148.5.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES