Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Dec 1;156(6):1691–1710. doi: 10.1084/jem.156.6.1691

Antigen-specific suppression in genetic responder mice to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Characterization of conventional and hybridoma-derived factors produced by suppressor T cells from mice injected as neonates with syngeneic GAT macrophages

PMCID: PMC2186880  PMID: 6184435

Abstract

Spleen cells from C57BL/10 mice injected with syngeneic B10 L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-pulsed macrophages (GAT-M phi) within 18 h of birth were unable to respond to soluble GAT, GAT- methylated bovine serum albumin, or B10 GAT-M phi as adults. Spleen cells from these neonatally treated mice responded at control levels to GAT presented in allogeneic M phi and to sheep erythrocytes. Partially purified T cells from these neonatally treated mice suppressed responses by syngeneic virgin, but not primed, spleen cells in an antigen-specific manner and acted during the early phases of the response. These responder GAT-specific suppressor T cells (GAT-TSR) were sensitive to anti-Thy-1 + C and 500-rad irradiation and have the phenotype Ly-1-2+, I-J+; GAT-TSR cells can only suppress responses by spleen cells syngeneic with the GAT-TSR cells at the I-J subregion of H- 2. Restimulation of these Ts cells with syngeneic GAT-M phi induces an antigen-specific suppressor factor within the supernatant fluid. The factor, GAT-TsFR, is a glycoprotein with a molecular weight between 48,000 and 63,000, as determined by gel filtration chromatography using isotonic buffers; it bears serologically detectable determinants encoded by the I-J subregion of the H-2 complex, has an antigen-binding site for GAT and L-glutamic acid50-L-tyrosine50, and shares idiotypic determinants with anti-GAT antibodies. The presence of GAT-TsFR in the first 36 h of in vitro culture is required for significant suppression. Furthermore, only responses by spleen cell syngeneic with the cells producing GAT-TsFR at the I-J subregion are suppressed. The fusion of GAT-TsFR-producing cells with BW5147 resulted in generation of two hybridomas with properties and characteristics identical to those of the conventional GAT-TsFR with one exception: conventional and hybridoma 372.D6.5 GAT-TsFR only suppress responses by spleen cells of the I-Jb haplotype, whereas suppression mediated by the second hybridoma GAT-TsFR (372.B3.5) is genetically unrestricted. These hybridoma GAT-TsFR are compared with nonresponder GAT-Ts factor (GAT- TsF) and these responder and nonresponder GAT-TsF are considered in the context of suppressor pathways.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araneo B. A., Kapp J. A. Immunosuppressive factor(s) from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). V. Inhibition of T cell proliferative responses. J Immunol. 1980 Jul;125(1):118–123. [PubMed] [Google Scholar]
  2. Bach B. A., Greene M. I., Benacerraf B., Nisonoff A. Mechanisms of regulation of cell-mediated immunity. IV. Azobenzenearsonate-specific suppressor factor(s) bear cross-reactive idiotypic determinants the expression of which is linked to the heavy-chain allotype linkage group of genes. J Exp Med. 1979 May 1;149(5):1084–1098. doi: 10.1084/jem.149.5.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benacerraf B., Germain R. N. A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol. 1981;13(1):1–10. doi: 10.1111/j.1365-3083.1981.tb00104.x. [DOI] [PubMed] [Google Scholar]
  4. Dietz M. H., Sy M. S., Benacerraf B., Nisonoff A., Greene M. I., Germain R. N. Antigen- and receptor-driven regulatory mechanisms. VII. H-2-restricted anti-idiotypic suppressor factor from efferent suppressor T cells. J Exp Med. 1981 Feb 1;153(2):450–463. doi: 10.1084/jem.153.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  6. Germain R. N., Ju S. T., Kipps T. J., Benacerraf B., Dorf M. E. Shared idiotypic determinants on antibodies and T-cell-derived suppressor factor specific for the random terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med. 1979 Mar 1;149(3):613–622. doi: 10.1084/jem.149.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  8. Kapp J. A., Araneo B. A. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid50-L-tyrosine50. J Immunol. 1982 Jun;128(6):2447–2452. [PubMed] [Google Scholar]
  9. Kapp J. A., Araneo B. A., Clevinger B. L. Suppression of antibody and T cell proliferative responses to L-glutamic acid60-L-alanine30-L-tyrosine10 by a specific monoclonal T cell factor. J Exp Med. 1980 Jul 1;152(1):235–240. doi: 10.1084/jem.152.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kapp J. A. Immunosuppressive factors from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10. IV. Lack of strain restrictions among allogeneic, nonresponder donors and recipients. J Exp Med. 1978 Apr 1;147(4):997–1006. doi: 10.1084/jem.147.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. I. Development of primary and secondary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1107–1120. doi: 10.1084/jem.138.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kapp J. A., Pierce C. W., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) II. Cellular source and effect on responder and nonresponder mice. J Exp Med. 1977 Apr 1;145(4):828–838. doi: 10.1084/jem.145.4.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kapp J. A., Pierce C. W., Schlossman S., Benacerraf B. Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in nonresponder mice by the terpolymer L-glutamic acid 60-L-alanine 30-L-tyrosine 10 (GAT). J Exp Med. 1974 Sep 1;140(3):648–659. doi: 10.1084/jem.140.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krupen K., Araneo B. A., Brink L., Kapp J. A., Stein S., Wieder K. J., Webb D. R. Purification and characterization of a monoclonal T-cell suppressor factor specific for poly(LGlu60LAla30LTyr10). Proc Natl Acad Sci U S A. 1982 Feb;79(4):1254–1258. doi: 10.1073/pnas.79.4.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okuda K., Minami M., Ju S. T., Dorf M. E. Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4557–4561. doi: 10.1073/pnas.78.7.4557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okuda K., Minami M., Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J Exp Med. 1981 Aug 1;154(2):468–479. doi: 10.1084/jem.154.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pierce C. W., Johnson B. M., Gershon H. E., Asofsky R. Immune responses in vitro. 3. Development of primary gamma-M, gamma-G, and gamma-A plaque-forming cell responses in mouse spleen cell cultures stimulated with heterologous erythrocytes. J Exp Med. 1971 Aug 1;134(2):395–416. doi: 10.1084/jem.134.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce C. W., Kapp J. A. Antigen-specific suppressor T-cell activity in genetically restricted immune spleen cells. J Exp Med. 1978 Nov 1;148(5):1271–1281. doi: 10.1084/jem.148.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pierce C. W., Kapp J. A., Benacerraf B. Regulation by the H-2 gene complex of macrophage-lymphoid cell interactions in secondary antibody responses in vitro. J Exp Med. 1976 Aug 1;144(2):371–381. doi: 10.1084/jem.144.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pierce C. W., Kapp J. A. Regulation of immune responses by suppressor T cells. Tohoku J Exp Med. 1976;5:91–143. [PubMed] [Google Scholar]
  21. Pierce C. W., Kapp J. A. Suppressor T-cell activity in responder X nonresponder (C57BL/10 X DBA/1)F1 spleen cells responsive to L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med. 1978 Nov 1;148(5):1282–1291. doi: 10.1084/jem.148.5.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pierres M., Germain R. N. Antigen-specific T cell-mediated suppression. IV. Role of macrophages in generation of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor T cells in responder mouse strains. J Immunol. 1978 Oct;121(4):1306–1314. [PubMed] [Google Scholar]
  23. Sorensen C. M., Pierce C. W. Haplotype-specific suppression of antibody responses in vitro. I. Generation of genetically restricted suppressor T cells by neonatal treatment with semiallogeneic spleen cells. J Exp Med. 1981 Jul 1;154(1):35–47. doi: 10.1084/jem.154.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sorensen C. M., Pierce C. W. Haplotype-specific suppression of antibody responses in vitro. II. Suppressor factor produced by T cells and T cell hybridomas from mice treated as neonates with semiallogeneic spleen cells. J Exp Med. 1981 Jul 1;154(1):48–59. doi: 10.1084/jem.154.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tada T., Okumura K. The role of antigen-specific T cell factors in the immune response. Adv Immunol. 1979;28:1–87. doi: 10.1016/s0065-2776(08)60799-3. [DOI] [PubMed] [Google Scholar]
  26. Theze J., Kapp J. A., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) III. Immunochemical properties of the GAT-specific suppressive factor. J Exp Med. 1977 Apr 1;145(4):839–856. doi: 10.1084/jem.145.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Waltenbaugh C. Regulation of immune responses by I-J gene products. I. Production and characterization of anti-I-J monoclonal antibodies. J Exp Med. 1981 Nov 1;154(5):1570–1583. doi: 10.1084/jem.154.5.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Webb D. R., Araneo B. A., Healy C., Kapp J. A., Krupen K., Nowowiejski I., Pierce C. W., Sorensen C. M., Stein S., Wieder K. J. Purification and biochemical analysis of antigen-specific suppressor factors isolated from T-cell hybridomas. Curr Top Microbiol Immunol. 1982;100:53–59. doi: 10.1007/978-3-642-68586-6_6. [DOI] [PubMed] [Google Scholar]
  29. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES