Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jan 1;157(1):1–14. doi: 10.1084/jem.157.1.1

Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production by human B cells

PMCID: PMC2186914  PMID: 6294212

Abstract

The Epstein-Barr virus (EBV) is a herpes virus that has the capacity to infect human B cells and to induce them to secrete immunoglobulin (Ig). In the current experiments, Poisson analysis of limiting dilution cultures has been used to study the activation of human peripheral B cells by the B95-8 strain of EBV. Under the culture conditions used, 0.2-1% of peripheral blood B cells were activated by EBV to secrete IgM or IgG. In addition, when multiple replicate cultures containing limited numbers of B cells were tested for IgM and for IgG production, the precursors for IgM and IgG segregated independently; thus, individual B cell precursors matured into cells secreting IgM or IgG but not both classes of Ig. Additional experiments using limiting dilutions of EBV were undertaken to study the viral requirements for B cell activation. These studies indicated that B cell activation by EBV to produce Ig was consistent with a "one-hit" model and inconsistent with a "two-hit" model. Taken together, these results indicate that infection by one EBV virion is sufficient to induce a precursor peripheral blood B cell to secrete Ig and that only one isotype of Ig is then secreted.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson J., Coutinho A., Melchers F. Frequencies of mitogen-reactive B cells in the mouse. II. Frequencies of B cells producing antibodies which lyse sheep or horse erythrocytes, and trinitrophenylated or nitroiodophenylated sheep erythrocytes. J Exp Med. 1977 Jun 1;145(6):1520–1530. doi: 10.1084/jem.145.6.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benner R., Coutinho A., Rijnbeek A. M., van Oudenaren A., Hooijkaas H. Immunoglobulin isotype expression. II. Frequency analysis in mitogen-reactive B cells. Eur J Immunol. 1981 Oct;11(10):799–804. doi: 10.1002/eji.1830111012. [DOI] [PubMed] [Google Scholar]
  3. Bird A. G., Britton S. A new approach to the study of human B lymphocyte function using an indirect plaque assay and a direct B cell activator. Immunol Rev. 1979;45:41–67. doi: 10.1111/j.1600-065x.1979.tb00272.x. [DOI] [PubMed] [Google Scholar]
  4. Bird A. G., Britton S., Ernberg I., Nilsson K. Characteristics of Epstein-Barr virus activation of human B lymphocytes. J Exp Med. 1981 Sep 1;154(3):832–839. doi: 10.1084/jem.154.3.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown N. A., Miller G. Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein Barr virus. J Immunol. 1982 Jan;128(1):24–29. [PubMed] [Google Scholar]
  6. Gearhart P. J., Sigal N. H., Klinman N. R. Production of antibodies of identical idiotype but diverse immunoglobulin classes by cells derived from a single stimulated B cell. Proc Natl Acad Sci U S A. 1975 May;72(5):1707–1711. doi: 10.1073/pnas.72.5.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greaves M. F., Brown G. Epstein-Barr virus binding sites on lymphocyte subpopulations and the origin of lymphoblasts in cultured lymphoic cell lines and in the blood of patients with infectious mononucleosis. Clin Immunol Immunopathol. 1975 Mar;3(4):514–524. doi: 10.1016/0090-1229(75)90076-8. [DOI] [PubMed] [Google Scholar]
  8. Henderson E., Miller G., Robinson J., Heston L. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology. 1977 Jan;76(1):152–163. doi: 10.1016/0042-6822(77)90292-6. [DOI] [PubMed] [Google Scholar]
  9. Henle W., Diehl V., Kohn G., Zur Hausen H., Henle G. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science. 1967 Sep 1;157(3792):1064–1065. doi: 10.1126/science.157.3792.1064. [DOI] [PubMed] [Google Scholar]
  10. Hopper K. E., Geczy C. L., Davies W. A. A mechanism of migration inhibition in delayed-type hypersensitivity reactions. I. Fibrin deposition on the surface of elicited peritoneal macrophages on vivo. J Immunol. 1981 Mar;126(3):1052–1058. [PubMed] [Google Scholar]
  11. Jondal M., Klein G. Surface markers on human B and T lymphocytes. II. Presence of Epstein-Barr virus receptors on B lymphocytes. J Exp Med. 1973 Dec 1;138(6):1365–1378. doi: 10.1084/jem.138.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kawanishi H., Saltzman L. E., Strober W. Characteristics and regulatory function of murine con A-induced, cloned T cells obtained from Peyer's patches and spleen: mechanisms regulating isotype-specific immunoglobulin production by Peyer's patch B cells. J Immunol. 1982 Aug;129(2):475–483. [PubMed] [Google Scholar]
  13. Kirchner H., Tosato G., Blaese R. M., Broder S., Magrath I. T. Polyclonal immunoglobulin secretion by human B lymphocytes exposed to Epstein-Barr virus in vitro. J Immunol. 1979 Apr;122(4):1310–1313. [PubMed] [Google Scholar]
  14. Klein G. Herpesviruses and oncogenesis. Proc Natl Acad Sci U S A. 1972 Apr;69(4):1056–1064. doi: 10.1073/pnas.69.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
  16. Moss D. J., Pope J. H. Assay of the infectivity of Epstein-Barr virus by transformation of human leucocytes in vitro. J Gen Virol. 1972 Nov;17(2):233–236. doi: 10.1099/0022-1317-17-2-233. [DOI] [PubMed] [Google Scholar]
  17. Murphy B. R., Phelan M. A., Nelson D. L., Yarchoan R., Tierney E. L., Alling D. W., Chanock R. M. Hemagglutinin-specific enzyme-linked immunosorbent assay for antibodies to influenza A and B viruses. J Clin Microbiol. 1981 Mar;13(3):554–560. doi: 10.1128/jcm.13.3.554-560.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker R. F. STATISTICAL STUDIES OF THE NATURE OF THE INFECTIOUS UNIT OF VACCINE VIRUS. J Exp Med. 1938 Apr 30;67(5):725–738. doi: 10.1084/jem.67.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Provisor A. J., Iacuone J. J., Chilcote R. R., Neiburger R. G., Crussi F. G. Acquired agammaglobulinemia after a life-threatening illness with clinical and laboratory features of infectious mononucleosis in three related male children. N Engl J Med. 1975 Jul 10;293(2):62–65. doi: 10.1056/NEJM197507102930202. [DOI] [PubMed] [Google Scholar]
  20. Robinson J. E., Smith D., Niederman J. Plasmacytic differentiation of circulating Epstein-Barr virus-infected B lymphocytes during acute infectious mononucleosis. J Exp Med. 1981 Feb 1;153(2):235–244. doi: 10.1084/jem.153.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siegal F. P., Siegal M. Enhancement by irradiated T cells of human plasma cell production: dissection of helper and suppressor functions in vitro. J Immunol. 1977 Feb;118(2):642–647. [PubMed] [Google Scholar]
  22. Steel C. M., Philipson J., Arthur E., Gardiner S. E., Newton M. S., McIntosh R. V. Possibility of EB virus preferentially transforming a subpopulation of human B lymphocytes. Nature. 1977 Dec 22;270(5639):729–731. doi: 10.1038/270729a0. [DOI] [PubMed] [Google Scholar]
  23. Stevens R. H., Macy E., Thiele C. J. Evidence that pokeweed-mitogen-reactive B cells are pre-committed in vivo to the high-rate secretion of a single immunoglobulin isotype in vitro. Scand J Immunol. 1981 Nov;14(5):449–457. doi: 10.1111/j.1365-3083.1981.tb00587.x. [DOI] [PubMed] [Google Scholar]
  24. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  25. Tosato G., Magrath I. T., Blaese R. M. T cell-mediated immunoregulation of Epstein Barr virus- (EBV) induced B lymphocyte activation in EBV-seropositive and EBV-seronegative individuals. J Immunol. 1982 Feb;128(2):575–579. [PubMed] [Google Scholar]
  26. Tosato G., Magrath I. T., Koski I. R., Dooley N. J., Blaese R. M. B cell differentiation and immunoregulatory T cell function in human cord blood lymphocytes. J Clin Invest. 1980 Aug;66(2):383–388. doi: 10.1172/JCI109867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tosato G., Magrath I., Koski I., Dooley N., Blaese M. Activation of suppressor T cells during Epstein-Barr-virus-induced infectious mononucleosis. N Engl J Med. 1979 Nov 22;301(21):1133–1137. doi: 10.1056/NEJM197911223012101. [DOI] [PubMed] [Google Scholar]
  28. Volsky D. J., Klein G., Volsky B., Shapiro I. M. Production of infectious Epstein--Barr virus in mouse lymphocytes. Nature. 1981 Oct 1;293(5831):399–401. doi: 10.1038/293399a0. [DOI] [PubMed] [Google Scholar]
  29. Yarchoan R., Biddison W. E., Schneider H. S., Nelson D. L. Human T-cell subset requirements for the production of specific anti-influenza virus antibody in vitro. J Clin Immunol. 1982 Apr;2(2):118–125. doi: 10.1007/BF00916895. [DOI] [PubMed] [Google Scholar]
  30. Yarchoan R., Murphy B. R., Strober W., Schneider H. S., Nelson D. L. Specific anti-influenza virus antibody production in vitro by human peripheral blood mononuclear cells. J Immunol. 1981 Dec;127(6):2588–2594. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES