Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jan 1;157(1):69–85. doi: 10.1084/jem.157.1.69

IgG subclass, IgE, and IgA anti-trinitrophenyl antibody production within trinitrophenyl-Ficoll-responsive B cell clones. Evidence in support of three distinct switching pathways

PMCID: PMC2186916  PMID: 6600273

Abstract

The IgM, IgG subclass, IgE, and IgA anti-trinitrophenyl (TNP) antibody (Ab) response of B cells to the type 2 antigen TNP-Ficoll was studied in athymic nude mice and in the in vitro splenic focus assay. Results from the splenic focus assay in which purified B lymphocyte preparations had been transferred to irradiated nu/nu recipients indicate that many TNP-Ficoll stimulated B cell clones secrete multiple isotypes and hence appear to be undergoing intraclonal isotype switching. Although the frequency of clones secreting each of the IgG subclasses was found to correlate with 5' to 3' Igh-gamma gene order, the frequency of IgE and IgA-secreting clones did not appear to be influenced by the respective position of Igh-epsilon and Igh-alpha on the chromosome. Unlike clones that secreted anti-TNP Ab of the IgG subclasses, IgE and IgA anti-TNP Ab-secreting clones did not have a high propensity for coexpression of isotypes encoded by 5' Igh-C genes. These data suggest that three distinct switching pathways may be employed by B cells responding to TNP-Ficoll: a common IgG pathway, an IgE pathway, and an IgA pathway. The presence of T cells resulted in a preferential enhancement of the production of anti-TNP Ab of those IgG subclasses which were least represented in the absence of T cells, i.e., IgG2b and IgG2a. No significant enhancement of IgE anti-TNP clonal frequency was found in the presence of T lymphocytes, but T cells were found to significantly enhance the clonal expression of IgA anti-TNP Ab. Although a relatively large number of B cell clones were found to synthesize IgE and IgA anti-TNP Ab in the splenic focus assay, relatively little or no secretion of these isotypes was detected in immune mice. Possible explanations for this apparent discrepancy are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Rosenberg N., Casanova R. J., Thomas E., Baltimore D. Immunoglobulin heavy-chain expression and class switching in a murine leukaemia cell line. Nature. 1982 Mar 25;296(5855):325–331. doi: 10.1038/296325a0. [DOI] [PubMed] [Google Scholar]
  2. Chiorazzi N., Fox D. A., Katz D. H. Hapten-specific IgE antibody responses in mice. VI. Selective enhancement of IgE antibody production by low doses of X-irradiation and by cyclophosphamide. J Immunol. 1976 Nov;117(5 Pt 1):1629–1637. [PubMed] [Google Scholar]
  3. Davis M. M., Kim S. K., Hood L. E. DNA sequences mediating class switching in alpha-immunoglobulins. Science. 1980 Sep 19;209(4463):1360–1365. doi: 10.1126/science.6774415. [DOI] [PubMed] [Google Scholar]
  4. Durkin H. G., Bazin H., Waksman B. H. Origin and fate of IgE-bearing lymphocytes. I. Peyer's patches as differentiation site of cells. Simultaneously bearing IgA and IgE. J Exp Med. 1981 Sep 1;154(3):640–648. doi: 10.1084/jem.154.3.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox D. A., Chiorazzi N., Katz D. H. Hapten specific IgE antibody responses in mice. V. Differential resistance of IgE and IgG B lymphocytes to X-irradiation. J Immunol. 1976 Nov;117(5 Pt 1):1622–1628. [PubMed] [Google Scholar]
  6. Gearhart P. J., Hurwitz J. L., Cebra J. J. Successive switching of antibody isotypes expressed within the lines of a B-cell clone. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5424–5428. doi: 10.1073/pnas.77.9.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gearhart P. J., Sigal N. H., Klinman N. R. Production of antibodies of identical idiotype but diverse immunoglobulin classes by cells derived from a single stimulated B cell. Proc Natl Acad Sci U S A. 1975 May;72(5):1707–1711. doi: 10.1073/pnas.72.5.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamaoka T., Katz D. H., Benacerraf B. Hapten-specific IgE antibody responses in mice. II. Cooperative interactions between adoptively transferred T and B lymphocytes in the development of IgE response. J Exp Med. 1973 Sep 1;138(3):538–556. doi: 10.1084/jem.138.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hurwitz J. L., Tagart V. B., Schweitzer P. A., Cebra J. J. Patterns of isotype expression by B cell clones responding to thymus-dependent and thymus-independent antigens in vitro. Eur J Immunol. 1982 Apr;12(4):342–348. doi: 10.1002/eji.1830120416. [DOI] [PubMed] [Google Scholar]
  10. Ishizaka K., Ishizaka T. Mechanisms of reaginic hypersensitivity and IgE antibody response. Immunol Rev. 1978;41:109–148. doi: 10.1111/j.1600-065x.1978.tb01462.x. [DOI] [PubMed] [Google Scholar]
  11. Ishizaka K., Suemura M., Yodoi J., Hirashima M. Regulation of IgE response by IgE binding factors. Fed Proc. 1981 Jun;40(8):2162–2166. [PubMed] [Google Scholar]
  12. Jackson G. D., Lemaître-Coelho I., Vaerman J. P., Bazin H., Beckers A. Rapid disappearance from serum of intravenously injected rat myeloma IgA and its secretion into bile. Eur J Immunol. 1978 Feb;8(2):123–126. doi: 10.1002/eji.1830080210. [DOI] [PubMed] [Google Scholar]
  13. Kimoto M., Kishimoto T., Noguchi S., Watanabe T., Yamamura Y. Regulation of antibody response in different immunoglobulin classes. II. Induction of in vitro IgE antibody response in murine spleen cells and demonstration of a possible involvement of distinct T-helper cells in IgE and IgG antibody responses. J Immunol. 1977 Mar;118(3):840–845. [PubMed] [Google Scholar]
  14. Kishimoto T., Shigemoto S., Watanabe T., Yamamura Y. Demonstration of phosphorylcholine-specific IgE B cells in CBA/N mice. J Immunol. 1979 Sep;123(3):1039–1043. [PubMed] [Google Scholar]
  15. Kuritani T., Cooper M. D. Human b-cell differentiation. I. Analysis of immunoglobulin heavy chain switching using monoclonal anti-immunoglobulin M, G, and A antibodies and pokeweed mitogen-induced plasma cell differentiation. J Exp Med. 1982 Mar 1;155(3):839–851. doi: 10.1084/jem.155.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu C. P., Tucker P. W., Mushinski J. F., Blattner F. R. Mapping of heavy chain genes for mouse immunoglobulins M and D. Science. 1980 Sep 19;209(4463):1348–1353. doi: 10.1126/science.6774414. [DOI] [PubMed] [Google Scholar]
  17. Mage M. G., McHugh L. L., Rothstein T. L. Mouse lymphocytes with and without surface immunoglobulin: preparative scale separation in polystyrene tissue culture dishes coated with specifically purified anti-immunoglobulin. J Immunol Methods. 1977;15(1):47–56. doi: 10.1016/0022-1759(77)90016-3. [DOI] [PubMed] [Google Scholar]
  18. McDermott M. R., Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol. 1979 May;122(5):1892–1898. [PubMed] [Google Scholar]
  19. Mond J. J., Mongini P. K., Sieckmann D., Paul W. E. Role of T lymphocytes in the response to TNP-AECM-Ficoll. J Immunol. 1980 Sep;125(3):1066–1070. [PubMed] [Google Scholar]
  20. Mongini P. K., Heber-Katz E. Use of a solid-phase 3H-radioimmunoassay for the measurement of immunoglobulin produced in short-term cultures of antibody-secreting cells. J Immunol Methods. 1982;49(1):39–52. doi: 10.1016/0022-1759(82)90364-7. [DOI] [PubMed] [Google Scholar]
  21. Mongini P. K., Paul W. E., Metcalf E. S. T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch. J Exp Med. 1982 Mar 1;155(3):884–902. doi: 10.1084/jem.155.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mongini P. K., Stein K. E., Paul W. E. T cell regulation of IgG subclass antibody production in response to T-independent antigens. J Exp Med. 1981 Jan 1;153(1):1–12. doi: 10.1084/jem.153.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mosier D. E., Zitron I. M., Mond J. J., Ahmed A., Scher I., Paul W. E. Surface immunoglobulin D as a functional receptor for a subclass of B lymphocytes. Immunol Rev. 1977;37:89–104. doi: 10.1111/j.1600-065x.1977.tb00246.x. [DOI] [PubMed] [Google Scholar]
  24. Nakamura I., Ray A., Mäkelä O. Oligomeric IgA: the major component of the in vitro primary response of mouse spleen fragments. J Exp Med. 1973 Oct 1;138(4):973–988. doi: 10.1084/jem.138.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. 3. Effect of thymectomy and splenectomy. J Immunol. 1971 Apr;106(4):1019–1025. [PubMed] [Google Scholar]
  26. Orlans E., Peppard J., Reynolds J., Hall J. Rapid active transport of immunoglobulin A from blood to bile. J Exp Med. 1978 Feb 1;147(2):588–592. doi: 10.1084/jem.147.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parrott D. M. The gut as a lymphoid organ. Clin Gastroenterol. 1976 May;5(2):211–228. [PubMed] [Google Scholar]
  28. Pasanen V. J., Karjalainen K., Kaartinen M., Mäkelä O. Preferential production of IgA antibodies by spleen fragments immunized and maintained in vitro. Scand J Immunol. 1981;13(2):111–117. doi: 10.1111/j.1365-3083.1981.tb00117.x. [DOI] [PubMed] [Google Scholar]
  29. Sakano H., Maki R., Kurosawa Y., Roeder W., Tonegawa S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature. 1980 Aug 14;286(5774):676–683. doi: 10.1038/286676a0. [DOI] [PubMed] [Google Scholar]
  30. Shimizu A., Takahashi N., Yaoita Y., Honjo T. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell. 1982 Mar;28(3):499–506. doi: 10.1016/0092-8674(82)90204-5. [DOI] [PubMed] [Google Scholar]
  31. Tada T. Regulation of reaginic antibody formation in animals. Prog Allergy. 1975;19:122–194. [PubMed] [Google Scholar]
  32. Teale J. M., Lafrenz D., Klinman N. R., Strober S. Immunoglobulin class commitment exhibited by B lymphocytes separated according to surface isotype. J Immunol. 1981 May;126(5):1952–1957. [PubMed] [Google Scholar]
  33. Teale J. M., Liu F. T., Katz D. H. A clonal analysis of the IgE response and its implications with regard to isotope commitment. J Exp Med. 1981 Apr 1;153(4):783–792. doi: 10.1084/jem.153.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Waldmann T. A. Disorders of immunoglobulin metabolism. N Engl J Med. 1969 Nov 20;281(21):1170–1177. doi: 10.1056/NEJM196911202812107. [DOI] [PubMed] [Google Scholar]
  35. Weisz-Carrington P., Roux M. E., McWilliams M., PHILLIPS-Quagliata J. M., Lamm M. E. Organ and isotype distribution of plasma cells producing specific antibody after oral immunization: evidence for a generalized secretory immune system. J Immunol. 1979 Oct;123(4):1705–1708. [PubMed] [Google Scholar]
  36. Wilder R. L., Yuen C. C., Subbarao B., Woods V. L., Alexander C. B., Mage R. G. Tritium (3H) radiolabeling of protein A and antibody to high specific activity: application to cell surface antigen radioimmunoassays. J Immunol Methods. 1979;28(3-4):255–266. doi: 10.1016/0022-1759(79)90192-3. [DOI] [PubMed] [Google Scholar]
  37. Yutoku M., Grossberg A. L., Stout R., Herzenberg L. A., Pressman D. Further studies on Th-B, a cell surface antigenic determinant present on mouse B cells, plasma cells and immature thymocytes. Cell Immunol. 1976 Apr;23(1):140–157. doi: 10.1016/0008-8749(76)90178-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES