Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Feb 1;157(2):687–704. doi: 10.1084/jem.157.2.687

Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. I. Significant variation in repertoire expression between individual mice

LM Staudt, W Gerhard
PMCID: PMC2186921  PMID: 6600489

Abstract

The paratypic and idiotypic diversity of the BALB/c antibody response to the hemagglutinin (HA) of the influenza A/PR/8/34 virus (PR8) was investigated using a panel of 125 anti-HA hybridoma antibodies derived from 14 BALB/c mice. The paratypic diversity, as assessed by a fine specificity analysis using 51 related influenza viruses, was extensive: 104 distinct paratopes were observed. In three instances, antibodies with indistinguishable paratopes were isolated from two individual mice. A minimum estimate of the size of the adult BALB/c anti-HA paratypic repertoire, calculated from these data, is 1,500. The generation of this diverse repertoire was studied by screening the anti-HA hybridoma panel for the presence of idiotypes (Id) that are markers for variable (V) region sequences derived from related germ line V genes. Three cross-reactive Id (IdX) that are markers for the V(k)21C, V(k)21B, and V(k)21A, D, E, or F L chain subgroups were found, respectively on 16, 1, and 10 anti-HA hybridoma antibodies derived from seven individual BALB/c mice. Thus, the V(k)21 IdX(+) hybridomas constitute 22 percent of the anti-HA hybridoma panel. The V(k)21 IdX are also present on 8.6 percent of K-bearing immunoglobulin in normal BALB/c serum. This suggests that the V(k)21 group is used preferentially in the BALB/c anti-HA immune response. The generation of the anti-HA repertoire was further studied using large panels of anti-HA hybridomas derived from two individual adult BALB/c mice. Anti-idiotypic antisera were raised in rabbits against individual hybridomas from each mouse. One anti-Id serum defined a family of four idiotypically and paratypically related, but not identical, antibodies from mouse 36, which represented 31 percent of the hybridoma antibodies isolated from this mouse. None of the 112 anti-HA hybridoma antibodies derived from 13 other individual mice showed idiotypic cross-reactivity. Furthermore, this Id could not be detected in anti-PR8 antisera from 75 individual BALB/c mice. Another anti-Id serum defined a family of 27 idiotypically related antibodies from mouse 37, which represented 50 percent of the hybridoma antibodies isolated from this mouse. Only 1 of the 71 hybridoma antibodies isolated from 13 other individuals was idiotypically cross-reactive. These results demonstrate that individual adult BALB/c mice express paratypically and idiotypically distinct antibody repertoires to the HA of influenza virus PR8. Based on these observations, we suggest that somatic mutation plays an important role in the generation of the adult anti-HA repertoire. Mechanisms that could account for differences in repertoire expression among individual mice are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Kemp D. J., Bernard O., Gough N., Webb E., Tyler B., Gerondakis S., Cory S. Organization and expression of murine immunoglobulin genes. Immunol Rev. 1981;59:5–32. doi: 10.1111/j.1600-065x.1981.tb00454.x. [DOI] [PubMed] [Google Scholar]
  2. Baltimore D. Gene conversion: some implications for immunoglobulin genes. Cell. 1981 Jun;24(3):592–594. doi: 10.1016/0092-8674(81)90082-9. [DOI] [PubMed] [Google Scholar]
  3. Burrows P., LeJeune M., Kearney J. F. Evidence that murine pre-B cells synthesise mu heavy chains but no light chains. Nature. 1979 Aug 30;280(5725):838–840. doi: 10.1038/280838a0. [DOI] [PubMed] [Google Scholar]
  4. Cancro M. P., Gerhard W., Klinman N. R. The diversity of the influenza-specific primary B-cell repertoire in BALB/c mice. J Exp Med. 1978 Mar 1;147(3):776–787. doi: 10.1084/jem.147.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cancro M. P., Wylie D. E., Gerhard W., Klinman N. R. Patterned acquisition of the antibody repertoire: diversity of the hemagglutinin-specific B-cell repertoire in neonatal BALB/c mice. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6577–6581. doi: 10.1073/pnas.76.12.6577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982 Dec;31(2 Pt 1):417–427. doi: 10.1016/0092-8674(82)90135-0. [DOI] [PubMed] [Google Scholar]
  7. Chang T. H., Steplewski Z., Koprowski H. Production of monoclonal antibodies in serum free medium. J Immunol Methods. 1980;39(4):369–375. doi: 10.1016/0022-1759(80)90237-9. [DOI] [PubMed] [Google Scholar]
  8. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  9. Edelman G. M., Gally J. A. Somatic recombination of duplicated genes: an hypothesis on the origin of antibody diversity. Proc Natl Acad Sci U S A. 1967 Feb;57(2):353–358. doi: 10.1073/pnas.57.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerhard W., Braciale T. J., Klinman N. R. The analysis of the monoclonal immune response to influenza virus. I. Production of monoclonal anti-viral antibodies in vitro. Eur J Immunol. 1975 Oct;5(10):720–725. doi: 10.1002/eji.1830051013. [DOI] [PubMed] [Google Scholar]
  12. Gerhard W., Yewdell J., Frankel M. E., Webster R. Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature. 1981 Apr 23;290(5808):713–717. doi: 10.1038/290713a0. [DOI] [PubMed] [Google Scholar]
  13. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  14. Julius M. A., McKean D. J., Potter M., Feldmann R. J., Weigert M. The structural basis of antigenic determinants on V kappa 21 light chains. Mol Immunol. 1981 Jan;18(1):1–9. doi: 10.1016/0161-5890(81)90042-0. [DOI] [PubMed] [Google Scholar]
  15. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  16. Kim S., Davis M., Sinn E., Patten P., Hood L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell. 1981 Dec;27(3 Pt 2):573–581. doi: 10.1016/0092-8674(81)90399-8. [DOI] [PubMed] [Google Scholar]
  17. Koprowski H., Gerhard W., Croce C. M. Production of antibodies against influenza virus by somatic cell hybrids between mouse myeloma and primed spleen cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2985–2988. doi: 10.1073/pnas.74.7.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  19. Levitt D., Cooper M. D. Mouse pre-B cells synthesize and secrete mu heavy chains but not light chains. Cell. 1980 Mar;19(3):617–625. doi: 10.1016/s0092-8674(80)80038-9. [DOI] [PubMed] [Google Scholar]
  20. Liu Y. N., Bona C. A., Schulman J. L. Idiotypy of clonal responses to influenza virus hemagglutinin. J Exp Med. 1981 Nov 1;154(5):1525–1538. doi: 10.1084/jem.154.5.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKean D. J., Bell M., Potter M. Mechanisms of antibody diversity: multiple genes encode structurally related mouse kappa variable regions. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3913–3917. doi: 10.1073/pnas.75.8.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Potter M. Antigen-binding myeloma proteins of mice. Adv Immunol. 1977;25:141–211. [PubMed] [Google Scholar]
  23. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  24. Sigal N. H., Klinman N. R. The B-cell clonotype repertoire. Adv Immunol. 1978;26:255–337. doi: 10.1016/s0065-2776(08)60232-1. [DOI] [PubMed] [Google Scholar]
  25. Valbuena O., Marcu K. B., Weigert M., Perry R. P. Multiplicity of germline genes specifying a group of related mouse kappa chains with implications for the generation of immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):780–784. doi: 10.1038/276780a0. [DOI] [PubMed] [Google Scholar]
  26. Weigert M., Gatmaitan L., Loh E., Schilling J., Hood L. Rearrangement of genetic information may produce immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):785–790. doi: 10.1038/276785a0. [DOI] [PubMed] [Google Scholar]
  27. Weigert M., Riblet R. Genetic control of antibody variable regions. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):837–846. doi: 10.1101/sqb.1977.041.01.093. [DOI] [PubMed] [Google Scholar]
  28. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  29. Yewdell J. W., Gerhard W. Antigenic characterization of viruses by monoclonal antibodies. Annu Rev Microbiol. 1981;35:185–206. doi: 10.1146/annurev.mi.35.100181.001153. [DOI] [PubMed] [Google Scholar]
  30. Yewdell J. W., Webster R. G., Gerhard W. U. Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature. 1979 May 17;279(5710):246–248. doi: 10.1038/279246a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES