Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Mar 1;157(3):1006–1019. doi: 10.1084/jem.157.3.1006

Isotypic and allotypic specificity of mouse rheumatoid factors

PMCID: PMC2186951  PMID: 6187878

Abstract

The specificity of polyclonal mouse rheumatoid factors (RF) was analyzed by competition experiments with heat-aggregated mouse IgG subclasses. The RF spontaneously produced by three normal mouse strains (129/Sv, CBA/Ht, and C57Bl/6) and by two strains with autoimmune diseases (MRL/l and NZB) were found to consist of distinct non-cross- reactive antibody subpopulations each specific for one IgG subclass. The sera of the normal strains contained IgG1- and IgG2a-specific RF. The autoimmune strains produced an additional variety of RF that was specific for The autoimmune strains produced an additional variety of RF that was specific for IgG2b. Also, the RF secreted by spleen cells of various normal strains after in vitro polyclonal activation with lipopolysaccharide could be resolved into distinct subpopulations specific for IgG1 or IgG2a. These results were confirmed by the analysis of monoclonal RF derived from BALB/c, C57Bl/6, CBA/Ht, and 129/Sv mice: of 73 hybridomas with RF activity, 71 displayed a strict subclass specificity. The subclass predominantly recognized depended on the origin of the spleen cells used to generate the hybridomas. After polyclonal activation in vitro, a broad spectrum of different specificities was obtained with 16 RF specific for IgG1, 13 for IgG2a, and 4 for IgG2b. In contrast, 27 of 28 monoclonal RF derived from 129/Sv and BALB/c mice without prior polyclonal activation were specific for IgG2a, and of these 75% were allotype specific since they failed to react with IgG2a of the b allotype. These results demonstrate the importance of subclass specificity in the production of RF in vivo. With the exception of the IgG2b-specific clones, all these monoclonal RF reacted preferentially with heat-aggregated or antigen-bound IgG. Among the hybridomas generated by the fusion of in vitro polyclonally activated spleen cells of 4-wk-old mice, the frequency of clones with RF activity was at least 40 times higher than that of clones specific for mouse IgM, human IgG, ovalbumin, and hen lysozyme.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. C., Kunkel H. G. Hidden rheumatoid factors with specificity for native gamma globulins. Arthritis Rheum. 1966 Dec;9(6):758–768. doi: 10.1002/art.1780090603. [DOI] [PubMed] [Google Scholar]
  2. Dognin M. J., Lauwereys M., Strosberg A. D. Multiple amino acid substitutions between murine gamma 2a heavy chain Fc regions of Ig1a and Ig1b allotypic forms. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4031–4035. doi: 10.1073/pnas.78.7.4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dresser D. W. Most IgM-producing cells in the mouse secrete auto-antibodies (rheumatoid factor). Nature. 1978 Aug 3;274(5670):480–483. doi: 10.1038/274480a0. [DOI] [PubMed] [Google Scholar]
  4. Dresser D. W., Popham A. M. Induction of an IgM anti-(bovine)-IgG response in mice by bacterial lipopolysaccharide. Nature. 1976 Dec 9;264(5586):552–554. doi: 10.1038/264552a0. [DOI] [PubMed] [Google Scholar]
  5. Dziarski R. Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies. J Immunol. 1982 Mar;128(3):1018–1025. [PubMed] [Google Scholar]
  6. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  7. GRUBB R., LAURELL A. B. Hereditary serological human serum groups. Acta Pathol Microbiol Scand. 1956;39(6):390–398. doi: 10.1111/j.1699-0463.1956.tb05067.x. [DOI] [PubMed] [Google Scholar]
  8. HARBOE M. A new hemagglutinating substance in the Gm system, anti-Gmb. Acta Pathol Microbiol Scand. 1959;47:191–198. doi: 10.1111/j.1699-0463.1959.tb04848.x. [DOI] [PubMed] [Google Scholar]
  9. HARBOE M., LUNDEVALL J. A new type in the Gm system. Acta Pathol Microbiol Scand. 1959;45(4):357–370. doi: 10.1111/j.1699-0463.1959.tb04721.x. [DOI] [PubMed] [Google Scholar]
  10. Izui S., Eisenberg R. A., Dixon F. J. IgM rheumatoid factors in mice injected with bacterial lipopolysaccharides. J Immunol. 1979 May;122(5):2096–2102. [PubMed] [Google Scholar]
  11. Izui S., Eisenberg R. A., Dixon F. J. Subclass-restricted IgG polyclonal antibody production in mice injected with lipid A-rich lipopolysaccharides. J Exp Med. 1981 Feb 1;153(2):324–338. doi: 10.1084/jem.153.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Masson P. L., Cambiaso C. L., Collet-Cassart D., Magnusson C. G., Richards C. B., Sindic C. J. Particle counting immunoassay (PACIA). Methods Enzymol. 1981;74(Pt 100):106–139. doi: 10.1016/0076-6879(81)74008-4. [DOI] [PubMed] [Google Scholar]
  13. Natvig J. B. Gm(g)--a "new" gamma-globulin factor. Nature. 1966 Jul 16;211(5046):318–319. doi: 10.1038/211318a0. [DOI] [PubMed] [Google Scholar]
  14. Natvig J. B., Turner M. W. Localization of Gm markers to different molecular regions of the Fc fragment. Clin Exp Immunol. 1971 May;8(5):685–700. [PMC free article] [PubMed] [Google Scholar]
  15. Ollo R., Rougeon F. Mouse immunoglobulin allotypes: post-duplication divergence of gamma 2a and gamma 2b chain genes. Nature. 1982 Apr 22;296(5859):761–763. doi: 10.1038/296761a0. [DOI] [PubMed] [Google Scholar]
  16. Parsons M., Cazenave P. A., Herzenberg L. A. Igh-4D, a new allotype at the mouse IgG1 heavy chain locus. Immunogenetics. 1981;14(3-4):341–344. doi: 10.1007/BF00342202. [DOI] [PubMed] [Google Scholar]
  17. Robbins D. L., Moore T. L., Carson D. A., Vaughan J. H. Relative reactivities of rheumatoid factors in serum and cells. Evidence for a selective deficiency in serum rheumatoid factor. Arthritis Rheum. 1978 Sep-Oct;21(7):820–826. doi: 10.1002/art.1780210713. [DOI] [PubMed] [Google Scholar]
  18. Schreier P. H., Bothwell A. L., Mueller-Hill B., Baltimore D. Multiple differences between the nucleic acid sequences of the IgG2aa and IgG2ab alleles of the mouse. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4495–4499. doi: 10.1073/pnas.78.7.4495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Van Snick J. L., Coulie P. Monoclonal anti-IgG autoantibodies derived from lipopolysaccharide-activated spleen cells of 129/Sv mice. J Exp Med. 1982 Jan 1;155(1):219–230. doi: 10.1084/jem.155.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WILLIAMS R. C., Jr, KUNKEL H. G. Antibodies to rabbit gamma-globulin after immunizing with various preparations of autologous gamma-globulin. Proc Soc Exp Biol Med. 1963 Mar;112:554–561. doi: 10.3181/00379727-112-28104. [DOI] [PubMed] [Google Scholar]
  21. Wetzel G. D., Kettman J. R. Activation of murine B lymphocytes. III. Stimulation of B lymphocyte clonal growth with lipopolysaccharide and dextran sulfate. J Immunol. 1981 Feb;126(2):723–728. [PubMed] [Google Scholar]
  22. van Snick J. L., Masson P. L. Age-dependent production of IgA and IgM autoantibodies against IgG2a in a colony of 129/Sv mice. J Exp Med. 1979 Jun 1;149(6):1519–1530. doi: 10.1084/jem.149.6.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Snick J. L., Masson P. L. Incidence and specificities of IgA and IgM anti-AgG autoantibodies in various mouse strains and colonies. J Exp Med. 1980 Jan 1;151(1):45–55. doi: 10.1084/jem.151.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES