Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jun 1;157(6):2029–2048. doi: 10.1084/jem.157.6.2029

Expression of C5a-like biological activities by the fifth component of human complement (C5) upon limited digestion with noncomplement enzymes without release of polypeptide fragments

PMCID: PMC2187036  PMID: 6222137

Abstract

Experimental conditions required for the expression of maximum C5 activation upon limited trypsin hydrolysis were determined to be 0.008 mol of trypsin/mol C5 in a reaction mixture containing 1 mg C5/ml veronal-buffered saline incubated at 37 degrees C for 30 min. Employing these optimal incubation conditions, the primary or preferred site of trypsin hydrolysis of the C5 alpha-chain resulted in the production of C5 alpha 1 (molecular weight, 90,000) and C5 alpha 5 (molecular weight, 25,000) fragments that remained disulfide bonded to the modified C5 molecule (C5'try). Detailed structural-functional analyses clearly indicated the trypsin-mediated conversion of the C5 alpha-chain to C5 alpha 1 and C5 alpha 5 was responsible for the acquisition of neutrophil lysosomal enzyme-releasing and chemotactic activities. Gel filtration column chromatography under physiological ionic strength, pH 7.4, or in the presence of 0.2% SDS further demonstrated that at least 90% of the total recoverable C5a-like biological activity was mediated by the 210,000 molecular weight forms of trypsin-modified C5. Other physiologically relevant, noncomplement protease enzymes (alpha- thrombin, plasmin, and elastase) also activated C5 to express C5a-like reactivities. Analysis of alpha-thrombin-induced, C5 alpha-chain cleavage events by SDS-polyacrylamide slab gel electrophoresis indicated that the mechanism of alpha-thrombin-activation of C5 is similar to that described for trypsin. Reconciliation of this novel mechanism of C5 activation by trypsin with previously published results, and a discussion of the biological significance of noncomplement enzyme-mediated activation of C5 as it might relate to inflammatory processes in vivo, was presented.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brozna J. P., Senior R. M., Kreutzer D. L., Ward P. A. Chemotactic factor inactivators of human granulocytes. J Clin Invest. 1977 Dec;60(6):1280–1288. doi: 10.1172/JCI108887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chenoweth D. E., Hugli T. E. Human C5a and C5a analogs as probes of the neutrophil C5a receptor. Mol Immunol. 1980 Feb;17(2):151–161. doi: 10.1016/0161-5890(80)90067-x. [DOI] [PubMed] [Google Scholar]
  3. Cochrane C. G., Müller-Eberhard H. J. The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement. J Exp Med. 1968 Feb 1;127(2):371–386. doi: 10.1084/jem.127.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fernandez H. N., Hugli T. E. Partial characterization of human C5a anaphylatoxin. I. Chemical description of the carbohydrate and polypeptide prtions of human C5a. J Immunol. 1976 Nov;117(5 Pt 1):1688–1694. [PubMed] [Google Scholar]
  5. Fernandez H. N., Hugli T. E. Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin. Polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. J Biol Chem. 1978 Oct 10;253(19):6955–6964. [PubMed] [Google Scholar]
  6. Gerard C., Chenoweth D. E., Hugli T. E. Response of human neutrophils to C5a: a role for the oligosaccharide moiety of human C5ades Arg-74 but not of C5a in biologic activity. J Immunol. 1981 Nov;127(5):1978–1982. [PubMed] [Google Scholar]
  7. Gerard C., Hugli T. E. Amino acid sequence of the anaphylatoxin from the fifth component of porcine complement. J Biol Chem. 1980 May 25;255(10):4710–4715. [PubMed] [Google Scholar]
  8. Gerard C., Hugli T. E. Anaphylatoxin from the fifth component of porcine complement. Purification and partial chemical characterization. J Biol Chem. 1979 Jul 25;254(14):6346–6351. [PubMed] [Google Scholar]
  9. Gerard C., Hugli T. E. Identification of classical anaphylatoxin as the des-Arg form of the C5a molecule: evidence of a modulator role for the oligosaccharide unit in human des-Arg74-C5a. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1833–1837. doi: 10.1073/pnas.78.3.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldlust M. B., Shin H. S., Hammer C. H., Mayer M. M. Studies of complement complex C5b,6 eluted from--EAC-6: reaction of C5b,6 with EAC4b,3b and evidence on the role of C2a and C3b in the activation of C5. J Immunol. 1974 Sep;113(3):998–1007. [PubMed] [Google Scholar]
  11. Goldstein I. M., Brai M., Osler A. G., Weissmann G. Lysosomal enzyme release from human leukocytes: mediation by the alternate pathway of complement activation. J Immunol. 1973 Jul;111(1):33–37. [PubMed] [Google Scholar]
  12. Goldstein I. M., Cala D., Radin A., Kaplan H. B., Horn J., Ranson J. Evidence of complement catabolism in acute pancreatitis. Am J Med Sci. 1978 May-Jun;275(3):257–264. doi: 10.1097/00000441-197805000-00003. [DOI] [PubMed] [Google Scholar]
  13. Goldstein I. M., Weissmann G. Generation of C5-derived lysosomal enzyme-releasing activity (C5a) by lysates of leukocyte lysosomes. J Immunol. 1974 Nov;113(5):1583–1588. [PubMed] [Google Scholar]
  14. Goldstein I., Hoffstein S., Gallin J., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2916–2920. doi: 10.1073/pnas.70.10.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henson P. M., Zanolari B., Schwartzman N. A., Hong S. R. Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin B. J Immunol. 1978 Sep;121(3):851–855. [PubMed] [Google Scholar]
  16. Horn J., Heymer B., Burk R., Merkle N., Herfarth C. Die Rolle des Komplements bei der experimentell induzierten Pankreatitis. Langenbecks Arch Chir. 1980;353(1):9–17. doi: 10.1007/BF01261794. [DOI] [PubMed] [Google Scholar]
  17. Hugli T. E. Chemical aspects of the serum anaphylatoxins. Contemp Top Mol Immunol. 1978;7:181–214. doi: 10.1007/978-1-4757-0779-3_6. [DOI] [PubMed] [Google Scholar]
  18. Hugli T. E., Müller-Eberhard H. J. Anaphylatoxins: C3a and C5a. Adv Immunol. 1978;26:1–53. doi: 10.1016/s0065-2776(08)60228-x. [DOI] [PubMed] [Google Scholar]
  19. Jacob H. S., Goldstein I. M., Shapiro I., Craddock P. R., Hammerschmidt D. E., Weissmann G. Sudden blindness in acute pancreatitis. Possible role of complement-induced retinal leukoembolization. Arch Intern Med. 1981 Jan;141(1):134–136. [PubMed] [Google Scholar]
  20. Johnson A. R., Hugli T. E., Müller-Eberhard H. J. Release of histamine from rat mast cells by the complement peptides C3a and C5a. Immunology. 1975 Jun;28(6):1067–1080. [PMC free article] [PubMed] [Google Scholar]
  21. Kolb W. P., Kolb L. M., Podack E. R. C1q: isolation from human serum in high yield by affinity chromatography and development of a highly sensitive hemolytic assay. J Immunol. 1979 May;122(5):2103–2111. [PubMed] [Google Scholar]
  22. Kunkel S. L., Kreutzer D. L., Goralnick S., Ward P. A. Purification of the third and fifth components of human complement: application of hydrophobic chromatography. J Immunol Methods. 1980;35(3-4):337–351. doi: 10.1016/0022-1759(80)90259-8. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  26. Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
  27. Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1975;44:697–724. doi: 10.1146/annurev.bi.44.070175.003405. [DOI] [PubMed] [Google Scholar]
  28. Nilsson U. R., Mandle R. J., Jr, McConnell-Mapes J. A. Human C3 and C5: subunit structure and modifications by trypsin and C42-C423. J Immunol. 1975 Feb;114(2 Pt 2):815–822. [PubMed] [Google Scholar]
  29. Nilsson U. R., Tomar R. H., Taylor F. B., Jr Additional studies on human C5: development of a modified purification method and characterization of the purified product by polyacrylamide gel electrophoresis. Immunochemistry. 1972 Jul;9(7):709–723. doi: 10.1016/0019-2791(72)90015-8. [DOI] [PubMed] [Google Scholar]
  30. Perez H. D., Goldstein I. M., Chernoff D., Webster R. O., Henson P. M. Chemotactic activity of C5ades Arg: evidence of a requirement for an anionic peptide 'helper factor' and inhibition by a cationic protein in serum from patients with systemic lupus erythematosus. Mol Immunol. 1980 Feb;17(2):163–169. doi: 10.1016/0161-5890(80)90068-1. [DOI] [PubMed] [Google Scholar]
  31. Perez H. D., Goldstein I. M., Webster R. O., Henson P. M. Enhancement of the chemotactic activity of human C5a des Arg by an anionic polypeptide ("cochemotaxin") in normal serum and plasma. J Immunol. 1981 Feb;126(2):800–804. [PubMed] [Google Scholar]
  32. Phan S. H., Ward P. A. Generation of biologic activity from the purified alpha-chain of C5. J Immunol. 1979 Dec;123(6):2735–2740. [PubMed] [Google Scholar]
  33. Reid K. B., Porter R. R. The proteolytic activation systems of complement. Annu Rev Biochem. 1981;50:433–464. doi: 10.1146/annurev.bi.50.070181.002245. [DOI] [PubMed] [Google Scholar]
  34. Robinson N. C., Tye R. W., Neurath H., Walsh K. A. Isolation of trypsins by affinity chromatography. Biochemistry. 1971 Jul 6;10(14):2743–2747. doi: 10.1021/bi00790a014. [DOI] [PubMed] [Google Scholar]
  35. Schreiber R. D., Pangburn M. K., Lesavre P. H., Müller-Eberhard H. J. Initiation of the alternative pathway of complement: recognition of activators by bound C3b and assembly of the entire pathway from six isolated proteins. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3948–3952. doi: 10.1073/pnas.75.8.3948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shin H. S., Snyderman R., Friedman E., Mellors A., Mayer M. M. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science. 1968 Oct 18;162(3851):361–363. doi: 10.1126/science.162.3851.361. [DOI] [PubMed] [Google Scholar]
  37. Tack B. F., Morris S. C., Prahl J. W. Fifth component of human complement: purification from plasma and polypeptide chain structure. Biochemistry. 1979 Apr 17;18(8):1490–1497. doi: 10.1021/bi00575a016. [DOI] [PubMed] [Google Scholar]
  38. Vallota E. H., Müller-Eberhard H. J. Formation of C3a and C5a anaphylatoxins in whole human serum after inhibition of the anaphylatoxin inactivator. J Exp Med. 1973 May 1;137(5):1109–1123. doi: 10.1084/jem.137.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vogt W. Preparation and some properties of anaphylatoxin from hog serum. Biochem Pharmacol. 1968 May;17(5):727–733. doi: 10.1016/0006-2952(68)90009-9. [DOI] [PubMed] [Google Scholar]
  40. Ward P. A., Newman L. J. A neutrophil chemotactic factor from human C'5. J Immunol. 1969 Jan;102(1):93–99. [PubMed] [Google Scholar]
  41. Webster R. O., Hong S. R., Johnston R. B., Jr, Henson P. M. Biologial effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology. 1980 Jun;2(3):201–219. doi: 10.1016/0162-3109(80)90050-8. [DOI] [PubMed] [Google Scholar]
  42. Wetsel R. A., Jones M. A., Kolb W. P. Immunoadsorbent affinity purification of the fifth component (C5) of human complement and development of a highly sensitive hemolytic assay. J Immunol Methods. 1980;35(3-4):319–335. doi: 10.1016/0022-1759(80)90258-6. [DOI] [PubMed] [Google Scholar]
  43. Wetsel R. A., Kolb W. P. Complement-independent activation of the fifth component (C5) of human complement: limited trypsin digestion resulting in the expression of biological activity. J Immunol. 1982 May;128(5):2209–2216. [PubMed] [Google Scholar]
  44. Wissler J. H. Chemistry and biology of the anaphylatoxin related serum peptide system. I. Purification, crystallization and properties of classical anaphylatoxin from rat serum. Eur J Immunol. 1972 Feb;2(1):73–83. doi: 10.1002/eji.1830020115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES