Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jun 1;157(6):1780–1793. doi: 10.1084/jem.157.6.1780

Interferonlike factors from antigen- and mitogen-stimulated human leukocytes with antirickettsial and cytolytic actions on Rickettsia prowazekii. Infected human endothelial cells, fibroblasts, and macrophages

PMCID: PMC2187059  PMID: 6189947

Abstract

Unique features of the primary site of rickettsial replication in typhus fevers, i.e., within the endothelial cells of small blood vessels in tissues, suggest that effector mechanisms, other than those dependent on phagocytosis by activated macrophages with enhanced microbicidal properties, most likely are necessary to explain the cell- mediated immune control of intracellular rickettsial replication in these sites. Theoretically, such mechanisms might involve contact between infected endothelial cells and activated T lymphocyte subpopulations or macrophages or immunologically induced soluble factors or lymphokines. Support for the existence of at least one of these alternative effector mechanisms is presented here for Rickettsia prowazekii. Cultures of human blood leukocytes, upon immunologically specific stimulation with R. prowazekii antigen or nonspecific stimulation with the mitogen phytohemagglutinin, produce soluble factor(s) in the supernatant fluid which, in culture, have (a) an intracellular antirickettsial action on R. prowazekii-infected human endothelial cells, fibroblasts, and macrophages, and (b) a specific cytolytic action on R. prowazekii-infected, but not uninfected bystander, human fibroblasts. Neither action is demonstrable in R. prowazekii-infected chicken embryo fibroblasts. The factor(s) has no direct antimicrobial action on extracellular rickettsiae and is inactivated by heating at 56 degree C for 1 h or by acid treatment at pH 2. Expression of the antirickettsial action requires new host cell messenger transcription and protein synthesis, whereas the cytolytic action does not. The circumstances of production and action and the properties of the factor(s) responsible for the intracellular antirickettsial, and perhaps also the cytolytic action are consistent with those of immune interferon (IFN-gamma).

Full Text

The Full Text of this article is available as a PDF (841.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blalock J. E., Georgiades J. A., Langford M. P., Johnson H. M. Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. Cell Immunol. 1980 Feb;49(2):390–394. doi: 10.1016/0008-8749(80)90041-6. [DOI] [PubMed] [Google Scholar]
  2. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  3. Chinchilla M., Frenkel J. K. Mediation of immunity to intracellular infection (Toxoplasma and Besnoitia) within somatic cells. Infect Immun. 1978 Mar;19(3):999–1012. doi: 10.1128/iai.19.3.999-1012.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GIMENEZ D. F. STAINING RICKETTSIAE IN YOLK-SAC CULTURES. Stain Technol. 1964 May;39:135–140. doi: 10.3109/10520296409061219. [DOI] [PubMed] [Google Scholar]
  5. Gimbrone M. A., Jr Culture of vascular endothelium. Prog Hemost Thromb. 1976;3:1–28. [PubMed] [Google Scholar]
  6. Goldberg I. H. Mode of action of antibiotics. II. Drugs affecting nucleic acid and protein synthesis. Am J Med. 1965 Nov;39(5):722–752. doi: 10.1016/0002-9343(65)90094-x. [DOI] [PubMed] [Google Scholar]
  7. Hanson B. A., Wisseman C. L., Jr, Waddell A., Silverman D. J. Some characteristics of heavy and light bands of Rickettsia prowazekii on Renografin gradients. Infect Immun. 1981 Nov;34(2):596–604. doi: 10.1128/iai.34.2.596-604.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hinrichs D. J., Jerrells T. R. In vitro evaluation of immunity to Coxiella burnetii. J Immunol. 1976 Sep;117(3):996–1003. [PubMed] [Google Scholar]
  9. Kazar J., Gillmore J. D., Gordon F. B. Effect of Interferon and Interferon Inducers on Infections with a Nonviral Intracellular Microorganism, Chlamydia trachomatis. Infect Immun. 1971 Jun;3(6):825–832. doi: 10.1128/iai.3.6.825-832.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kekcheeva N. G., Vovk O. A., Abrosimova G. E., Chereshkova E. A. Activity of macrophages from guinea pigs at various periods after infection with Rickettsia prowazeki. Acta Virol. 1981 May;25(3):150–154. [PubMed] [Google Scholar]
  11. Kokorin I. N., Kabanova E. A., Shirokova E. M. Role of macrophages in infection with Rickettsia conorii. Acta Virol. 1980 Mar;24(2):137–143. [PubMed] [Google Scholar]
  12. Murphy J. R., Wisseman C. G., Jr, Fiset P. Mechanisms of immunity in typhus infection: adoptive transfer of immunity to Rickettsia mooseri. Infect Immun. 1979 May;24(2):387–393. doi: 10.1128/iai.24.2.387-393.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nacy C. A., Leonard E. J., Meltzer M. S. Macrophages in resistance to rickettsial infections: characterization of lymphokines that induce rickettsiacidal activity in macrophages. J Immunol. 1981 Jan;126(1):204–207. [PubMed] [Google Scholar]
  14. Nacy C. A., Osterman J. V. Host defenses in experimental scrub typhus: role of normal and activated macrophages. Infect Immun. 1979 Nov;26(2):744–750. doi: 10.1128/iai.26.2.744-750.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  16. Peter J. B., Stratton J. A., Stempel K. E., Yu D., Cardin C. Characteristics of a cytotoxin ("lymphotoxin") produced by stimulation of human lymphoid tissue. J Immunol. 1973 Sep;111(3):770–782. [PubMed] [Google Scholar]
  17. Rubin B. Y., Gupta S. L. Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5928–5932. doi: 10.1073/pnas.77.10.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wheelock E. F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science. 1965 Jul 16;149(3681):310–311. doi: 10.1126/science.149.3681.310. [DOI] [PubMed] [Google Scholar]
  19. Wisseman C. L., Jr, Waddell A. D. In vitro studies on rickettsia-host cell interactions: intracellular growth cycle of virulent and attenuated Rickettsia prowazeki in chicken embryo cells in slide chamber cultures. Infect Immun. 1975 Jun;11(6):1391–1404. doi: 10.1128/iai.11.6.1391-1401.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wisseman C. L., Jr, Waddell A. D., Walsh W. T. In vitro studies of the action of antibiotics on Rickettsia prowazeki by two basic methods of cell culture. J Infect Dis. 1974 Dec;130(6):564–574. doi: 10.1093/infdis/130.6.564. [DOI] [PubMed] [Google Scholar]
  21. Wisseman C. L., Jr, el Batawi Y., Wood W. H., Jr, Noriega A. R. Gross and microscopic skin reactions to killed typhus Rickettsiae in human beings. J Immunol. 1967 Jan;98(1):194–209. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES