Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jul 1;158(1):84–98. doi: 10.1084/jem.158.1.84

Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology

PMCID: PMC2187071  PMID: 6223114

Abstract

UV irradiation of mice causes a systemic immune alteration that can be detected either by suppression of the immunologic rejection of UV- induced tumors, or by suppression of contact hypersensitivity (CHS). Suppression of these two immunologic responses has similar photobiologic characteristics and in both cases is associated with the generation of antigen-specific suppressor T cells. To identify whether a specific photoreceptor for this effect exists, the relative wavelength effectiveness (action spectrum) was determined for the UV- induced suppression of CHS. Narrow bands of UV (half bandwidth 3 nm) were used at 10 wavelengths from 250 to 320 nm to obtain dose-response curves. Irradiation with each of these bands of UV caused dose- dependent immunosuppression of CHS, but with differing effectiveness. Immunosuppression was clearly separable from the generation of gross skin damage and inflammation. Further, immunosuppression by the most effective wavelength (270 nm) was associated with the generation of antigen-specific suppressor cells. The action spectrum derived from the dose-response curves has a maximum between 260 and 270 nm, a shoulder at 280-290 nm, and declines steadily to approximately 3% of maximum at 320 nm. The finding of such a clearly defined wavelength dependence implies the presence of a specific photoreceptor for this effect. Removing the stratum corneum by tape stripping before UV irradiation prevented the suppression of CHS using 254-nm radiation, suggesting the photoreceptor is superficially located in the skin. A number of epidermal compounds with absorption spectra similar to the action spectrum are discussed and evaluated with respect to their potential for being the photoreceptor. Based on (a) the close fit of its absorption spectrum to the action spectrum, (b) its superficial location in the stratum corneum, and (c) its photochemical properties, the hypothesis is advanced that the photoreceptor for systemic UV- induced immunosuppression of contact hypersensitivity may be urocanic acid. As such, it may also play a role in UV-induced carcinogenesis via the production of tumor-specific suppressor cells.

Full Text

The Full Text of this article is available as a PDF (966.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agin P. P., Rose A. P., 3rd, Lane C. C., Akin F. J., Sayre R. M. Changes in epidermal forward scattering absorption after UVA or UVA-UVB irradiation. J Invest Dermatol. 1981 Mar;76(3):174–177. doi: 10.1111/1523-1747.ep12525676. [DOI] [PubMed] [Google Scholar]
  2. Anglin J. H., Jr, Batten W. H. Structure of urocanic acid photodimers. Photochem Photobiol. 1970 Apr;11(4):271–277. doi: 10.1111/j.1751-1097.1970.tb05995.x. [DOI] [PubMed] [Google Scholar]
  3. Baden H. P., Pathak M. A. The metabolism and function of urocanic acid in skin. J Invest Dermatol. 1967 Jan;48(1):11–17. [PubMed] [Google Scholar]
  4. Baden H. P., Pathak M. A. Urocanic acid in keratinizing tissue. Biochim Biophys Acta. 1965 Jun 15;104(1):200–204. doi: 10.1016/0304-4165(65)90236-9. [DOI] [PubMed] [Google Scholar]
  5. Brown W. R., Habowsky J. E. Comparative ultrastructure and cytochemistry of epidermal responses to tape stripping, ethanol and vitamin A acid in hairless mice. J Invest Dermatol. 1979 Sep;73(3):203–206. doi: 10.1111/1523-1747.ep12513464. [DOI] [PubMed] [Google Scholar]
  6. De Fabo E. C., Harding R. W., Shropshire W. Action Spectrum between 260 and 800 Nanometers for the Photoinduction of Carotenoid Biosynthesis in Neurospora crassa. Plant Physiol. 1976 Mar;57(3):440–445. doi: 10.1104/pp.57.3.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Fabo E. C., Kripke M. L. Wavelength dependence and dose-rate independence of UV radiation-induced immunologic unresponsiveness of mice to a UV-induced fibrosarcoma. Photochem Photobiol. 1980 Aug;32(2):183–188. doi: 10.1111/j.1751-1097.1980.tb04007.x. [DOI] [PubMed] [Google Scholar]
  8. DeFabo E. C., Kripke M. L. Dose-response characteristics of immunologic unresponsiveness to UV-induced tumors produced by UV irradiation of mice. Photochem Photobiol. 1979 Sep;30(3):385–390. doi: 10.1111/j.1751-1097.1979.tb07372.x. [DOI] [PubMed] [Google Scholar]
  9. Elkind M. M., Han A., Chang-Liu C. M. "Sunlight" -induced mammalian cell killing: a comparative study of ultraviolet and near-ultraviolet inactivation. Photochem Photobiol. 1978 Jun;27(6):709–715. doi: 10.1111/j.1751-1097.1978.tb07668.x. [DOI] [PubMed] [Google Scholar]
  10. Fisher M. S., Kripke M. L. Further studies on the tumor-specific suppressor cells induced by ultraviolet radiation. J Immunol. 1978 Sep;121(3):1139–1144. [PubMed] [Google Scholar]
  11. Fisher M. S., Kripke M. L. Suppressor T lymphocytes control the development of primary skin cancers in ultraviolet-irradiated mice. Science. 1982 Jun 4;216(4550):1133–1134. doi: 10.1126/science.6210958. [DOI] [PubMed] [Google Scholar]
  12. Fisher M. S., Kripke M. L. Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1688–1692. doi: 10.1073/pnas.74.4.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGSON C. Nucleic acids and their decomposition products in normal and pathological horny layers. J Invest Dermatol. 1962 Aug;39:69–78. doi: 10.1038/jid.1962.85. [DOI] [PubMed] [Google Scholar]
  14. Holick M. F., MacLaughlin J. A., Clark M. B., Holick S. A., Potts J. T., Jr, Anderson R. R., Blank I. H., Parrish J. A., Elias P. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980 Oct 10;210(4466):203–205. doi: 10.1126/science.6251551. [DOI] [PubMed] [Google Scholar]
  15. Ishizaka K., Adachi T. Generation of specific helper cells and suppressor cells in vitro for the IgE and IgG antibody responses. J Immunol. 1976 Jul;117(1):40–47. [PubMed] [Google Scholar]
  16. Letvin N. L., Greene M. I., Benacerraf B., Germain R. N. Immunologic effects of whole-body ultraviolet irradiation: selective defect in splenic adherent cell function in vitro. Proc Natl Acad Sci U S A. 1980 May;77(5):2881–2885. doi: 10.1073/pnas.77.5.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levis W. R., Lincoln P. M., Dattner A. M. Effect of ultraviolet light on dinitrochlorobenzene-specific antigen-presenting function. J Immunol. 1978 Oct;121(4):1496–1500. [PubMed] [Google Scholar]
  18. Lord J. T., Ziboh V. A., Poitier J., Legget G., Penneys N. S. The effects of photosensitizers and ultraviolet irradiation on the biosynthesis and metabolism of prostaglandins. Br J Dermatol. 1976 Oct;95(4):397–405. doi: 10.1111/j.1365-2133.1976.tb00841.x. [DOI] [PubMed] [Google Scholar]
  19. Noonan F. P., De Fabo E. C., Kripke M. L. Suppression of contact hypersensitivity by UV radiation and its relationship to UV-induced suppression of tumor immunity. Photochem Photobiol. 1981 Dec;34(6):683–689. [PubMed] [Google Scholar]
  20. Noonan F. P., De Fabo E. C., Kripke M. L. Suppression of contact hypersensitivity by ultraviolet radiation: an experimental model. Springer Semin Immunopathol. 1981;4(3):293–304. doi: 10.1007/BF01892183. [DOI] [PubMed] [Google Scholar]
  21. Noonan F. P., Kripke M. L., Pedersen G. M., Greene M. I. Suppression of contact hypersensitivity in mice by ultraviolet irradiation is associated with defective antigen presentation. Immunology. 1981 Jul;43(3):527–533. [PMC free article] [PubMed] [Google Scholar]
  22. Pierres M., Germain R. N. Antigen-specific T cell-mediated suppression. IV. Role of macrophages in generation of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor T cells in responder mouse strains. J Immunol. 1978 Oct;121(4):1306–1314. [PubMed] [Google Scholar]
  23. Scott I. R. Factors controlling the expressed activity of histidine ammonia-lyase in the epidermis and the resulting accumulation of urocanic acid. Biochem J. 1981 Mar 15;194(3):829–838. doi: 10.1042/bj1940829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Setlow R. B. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3363–3366. doi: 10.1073/pnas.71.9.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spellman C. W., Daynes R. A. Modification of immunological potential by ultraviolet radiation. II. Generation of suppressor cells in short-term UV-irradiated mice. Transplantation. 1977 Aug;24(2):120–126. doi: 10.1097/00007890-197708000-00005. [DOI] [PubMed] [Google Scholar]
  26. Sutherland J. C., Griffin K. P. Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiat Res. 1981 Jun;86(3):399–409. [PubMed] [Google Scholar]
  27. TABACHNICK J. Studies on the biochemistry of epidermis. I. The free amino acids, ammonia, urocanic acid and nucleic acid content of normal albino guinea pig epidermis. J Invest Dermatol. 1959 May;32(5):563–568. doi: 10.1038/jid.1959.94. [DOI] [PubMed] [Google Scholar]
  28. ZANNONI V. G., LA DU B. N. Determination of histidine alpha-deaminase in human stratum corneum and its absence in histidinaemia. Biochem J. 1963 Jul;88:160–162. doi: 10.1042/bj0880160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES