Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Sep 1;158(3):703–717. doi: 10.1084/jem.158.3.703

Activation of antigen-specific suppressor T cells by B cells from mice immunized with type III pneumococcal polysaccharide

PMCID: PMC2187111  PMID: 6193230

Abstract

The transfer of B lymphocytes from mice immunized with type III pneumococcal polysaccharide (SSS-III) results in antigen-specific suppression of the antibody response of recipients immunized with SSS- III. Such suppression shares many features associated with low-dose paralysis, a phenomenon mediated by suppressor T cells; it reaches maximal levels 3 d after the transfer of viable or irradiated immune B cells and can be eliminated by the depletion of SSS-III-binding cells from spleen cell suspensions before transfer. In a two-step cell transfer experiment, purified T lymphocytes, isolated from recipients previously given immune B cells, caused suppression upon transfer to other mice immunized with SSS-III. Also, B-cell-induced suppression could be abrogated in a competitive manner by the infusion of amplifier T lymphocytes, as was previously demonstrated in the case of low-dose paralysis. These findings suggest that B cell surface components, presumably the idiotypic determinants of cell-associated antibody specific for SSS-III, are instrumental in activating suppressor T cells involved in regulating the magnitude of the antibody response to SSS- III.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. H., Stashak P. W. Quantitative and qualitative studies on the primary antibody response to pneumococcal polysaccharides at ehe cellular level. J Immunol. 1969 Dec;103(6):1342–1348. [PubMed] [Google Scholar]
  2. Baker P. J., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B. Direct evidence for the involvement of T suppressor cells in the expression of low-dose paralysis to type III pneumococcal polysaccharide. J Immunol. 1982 Mar;128(3):1059–1062. [PubMed] [Google Scholar]
  3. Baker P. J., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B. Regulation of the antibody response to pneumococcal polysaccharide by thymus-derived cells. Rev Infect Dis. 1981 Mar-Apr;3(2):332–341. doi: 10.1093/clinids/3.2.332. [DOI] [PubMed] [Google Scholar]
  4. Baker P. J., Prescott B. Letter: The basis for conflicting results obtained in studies on the plaque-forming cell response to type III pneumococcal polysaccharide. J Immunol. 1975 Sep;115(3):891–892. [PubMed] [Google Scholar]
  5. Baker P. J., Prescott B., Stashak P. W., Amsbaugh D. F. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. 3. Studies on the average avidity of the antibody produced by specific plaque-forming cells. J Immunol. 1971 Sep;107(3):719–724. [PubMed] [Google Scholar]
  6. Baker P. J., Reed N. D., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. I. Nature of regulatory cells. J Exp Med. 1973 Jun 1;137(6):1431–1441. doi: 10.1084/jem.137.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B., Barth R. F. Evidence for the existence of two functionally distinct types of cells which regulate the antibody response to type 3 pneumococcal polysaccharide. J Immunol. 1970 Dec;105(6):1581–1583. [PubMed] [Google Scholar]
  8. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. I. Dose-response studies and the effect of prior immunization on the magnitude of the antibody response. Immunology. 1971 Apr;20(4):469–480. [PMC free article] [PubMed] [Google Scholar]
  9. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. II. Studies on the relative rate of antibody synthesis and release by antibody-producing cells. Immunology. 1971 Apr;20(4):481–492. [PMC free article] [PubMed] [Google Scholar]
  10. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. II. Mode of action of thymic-derived suppressor cells. J Immunol. 1974 Jan;112(1):404–409. [PubMed] [Google Scholar]
  11. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. IV. Role of suppressor T cells in the development of low-dose paralysis. J Immunol. 1974 Jun;112(6):2020–2027. [PubMed] [Google Scholar]
  12. Baker P. J., Stashak P. W., Prescott B. Use of erythrocytes sensitized with purified pneumococcal polysaccharides for the assay of antibody and antibody-producing cells. Appl Microbiol. 1969 Mar;17(3):422–426. doi: 10.1128/am.17.3.422-426.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bona C., Paul W. E. Cellular basis of regulation of expression of idiotype. I. T-suppressor cells specific for MOPC 460 idiotype regulate the expression of cells secreting anti-TNP antibodies bearing 460 idiotype. J Exp Med. 1979 Mar 1;149(3):592–600. doi: 10.1084/jem.149.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Boyle W. An extension of the 51Cr-release assay for the estimation of mouse cytotoxins. Transplantation. 1968 Sep;6(6):761–764. doi: 10.1097/00007890-196809000-00002. [DOI] [PubMed] [Google Scholar]
  15. Calkins C. E. Interactions between primed and unprimed cells in the regulation of in vitro antibody responses. I. Role of "plasma cells" as inducers of suppression. Eur J Immunol. 1982 Jan;12(1):70–75. doi: 10.1002/eji.1830120113. [DOI] [PubMed] [Google Scholar]
  16. FELTON L. D., KAUFFMANN G., PRESCOTT B., OTTINGER B. Studies on the mechanism of the immunological paralysis induced in mice by pneumococcal polysaccharides. J Immunol. 1955 Jan;74(1):17–26. [PubMed] [Google Scholar]
  17. FELTON L. D., PRESCOTT B., KAUFFMANN G., OTTINGER B. Pneumococcal antigenic polysaccharide substances from animal tissues. J Immunol. 1955 Mar;74(3):205–213. [PubMed] [Google Scholar]
  18. FELTON L. D. The significance of antigen in animal tissues. J Immunol. 1949 Jan;61(1):107–117. [PubMed] [Google Scholar]
  19. Gottlieb C. F. Application of transformations to normalize the distribution of plaque-forming cells. J Immunol. 1974 Jul;113(1):51–57. [PubMed] [Google Scholar]
  20. Jones J. M., Amsbaugh D. F., Prescott B. Kinetics of the antibody response to type III pneumococcal polysaccharide (SSS-III). I. Use of 125I-labeled SSS-III to study serum antibody levels, as well as the distribution and excretion of antigen after immunization. J Immunol. 1976 Jan;116(1):41–51. [PubMed] [Google Scholar]
  21. Jones J. M., Amsbaugh D. F., Prescott B. Kinetics of the antibody response to type III pneumococcal polysaccharide. II. Factors influencing the serum antibody levels after immunization with an optimally immunogenic dose of antigen. J Immunol. 1976 Jan;116(1):52–64. [PubMed] [Google Scholar]
  22. Jones J. M., Amsbaugh D. F., Stashak P. W., Prescott B., Baker P. J., Alling D. W. Kinetics of the antibody response to type III pneumococcal polysaccharide. I. Evidence that suppressor cells function by inhibiting the recruitment and proliferation of antibody-producing cells. J Immunol. 1976 Mar;116(3):647–656. [PubMed] [Google Scholar]
  23. Manohar V., Brown E., Leiserson W. M., Chused T. M. Expression of Lyt-1 by a subset of B lymphocytes. J Immunol. 1982 Aug;129(2):532–538. [PubMed] [Google Scholar]
  24. Mathieson B. J., Sharrow S. O., Bottomly K., Fowlkes B. J. Ly 9, an alloantigenic marker of lymphocyte differentiation. J Immunol. 1980 Nov;125(5):2127–2136. [PubMed] [Google Scholar]
  25. Morse H. C., 3rd, Prescott B., Cross S. S., Stashak P. W., Baker P. J. Regulation of the antibody response to type III pneumococcal polysaccharide. V. Ontogeny of factors influencing the magnitude of the plaque-forming cell response. J Immunol. 1976 Feb;116(2):279–287. [PubMed] [Google Scholar]
  26. Owen F. L., Ju S. T., Nisonoff A. Presence on idiotype-specific suppressor T cells of receptors that interact with molecules bearing the idiotype. J Exp Med. 1977 Jun 1;145(6):1559–1566. doi: 10.1084/jem.145.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shimamura T., Hashimoto K., Sasaki S. Feedback suppression of the immune response in vivo. I. Immune B cells induce antigen-specific suppressor T cells. Cell Immunol. 1982 Mar 15;68(1):104–113. doi: 10.1016/0008-8749(82)90093-4. [DOI] [PubMed] [Google Scholar]
  28. Tasiaux N., Leuwenkroon R., Bruyns C., Urbain J. Possible occurrence and meaning of lymphocytes bearing autoanti-idiotypic receptors during the immune response. Eur J Immunol. 1978 Jul;8(7):464–468. doi: 10.1002/eji.1830080704. [DOI] [PubMed] [Google Scholar]
  29. Taylor C. E., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B., Baker P. J. Cell surface antigens and other characteristics of T cells regulating the antibody response to type III pneumococcal polysaccharide. J Immunol. 1983 Jan;130(1):19–23. [PubMed] [Google Scholar]
  30. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES